Integrative Approaches for Spatial and Multi-Omics data

空间和多组学数据的综合方法

基本信息

  • 批准号:
    RGPIN-2022-05272
  • 负责人:
  • 金额:
    $ 1.38万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Genomic technologies combined with modern data analytics are powerful approaches to revealing new insights into various biological questions. Recently, those approaches have expanded to the spatial dimension where thousands of genes are measured at each point across a 2D tissue sample. However, few tools exist to integrate the analysis of large amounts of biological data with spatial information. Instead, the spatial analyses are left to hands-on annotation by an expert biologist. Thus, there is a gap in developing analysis tools for spatial multi-omics that learn biologically meaningful-latent variables and use those variables for inference and prediction. Spatial multi-omics consists of count matrices from multiple modalities. Some modalities have partially overlapping variables, a modality with count matrix and spatial information, while others have a natural grouping of variables. Thus, we can consider that spatial multi-omics is generated from an underlying latent variable process that captures co-occurrence, non-linear interaction, and natural grouping of variables within and across modalities. The overarching long-term goal of my research program is to 1) develop transformative statistical and machine learning methods that integrate complex, real-world data across multiple modalities, 2) advance knowledge in characterizing their performance. For example, my recent studies have shown that probabilistic latent Dirichlet allocation identifies functional synonyms variables represented in bacterial communities. The main objective of this Discovery grant is to develop integrative approaches to discover latent variables in spatial multi-omics and use those variables to build Bayesian hierarchical models for prediction and inference. The studies extend our current methods development into microbiome multi-omics, leading to latent variable and spatial features extraction. The short-term objectives of this research are to 1. Investigate probabilistic graphical models for spatial multi-omics, including semi-supervised methods, 2. Develop Bayesian hierarchical models for prediction and inference, 3. Investigate Bayesian sampling methods and model assessment for spatial multi-omics integrative approaches. We have spatial multi-omics data from my collaborators for the human brain and gut microbiome. Having two datasets will allow us to evaluate the performance of the integrative approaches using domain experts' knowledge, reference models, and simulation studies. The studies will lead to new analytical tools for uncovering biological heterogeneity and spatial features for prediction and inference in spatial multi-omics. The tools will be available as open-source libraries to facilitate their use. Our work is potentially transformative to multiple modalities of data, including space. Thus, this work will impact many disciplines such as biology, ecology, agriculture, finance.
基因组技术与现代数据分析相结合,是揭示各种生物学问题新见解的有力方法。最近,这些方法已经扩展到空间维度,其中在2D组织样本的每个点处测量数千个基因。然而,很少有工具可以将大量生物数据的分析与空间信息相结合。相反,空间分析留给专家生物学家动手注释。因此,在开发空间多组学分析工具方面存在差距,这些工具学习生物学意义的潜在变量并使用这些变量进行推理和预测。空间多组学由来自多个模态的计数矩阵组成。一些模态具有部分重叠的变量,具有计数矩阵和空间信息的模态,而另一些模态具有自然的变量分组。因此,我们可以认为空间多组学是从一个潜在的潜在变量过程中产生的,该过程捕获了模态内和模态间的变量的共现、非线性相互作用和自然分组。 我的研究计划的首要长期目标是:1)开发变革性的统计和机器学习方法,将复杂的真实世界数据整合到多种模式中,2)在表征其性能方面推进知识。例如,我最近的研究表明,概率潜在狄利克雷分配识别细菌群落中代表的功能同义变量。这项发现补助金的主要目标是开发综合方法来发现空间多组学中的潜在变量,并使用这些变量构建贝叶斯层次模型进行预测和推理。这些研究将我们目前的方法发展扩展到微生物组多组学,导致潜在变量和空间特征提取。 本研究的短期目标是1。研究空间多组学的概率图模型,包括半监督方法,2。开发贝叶斯层次模型进行预测和推理,3。研究贝叶斯抽样方法和空间多组学综合方法的模型评估。 我们从我的合作者那里获得了人类大脑和肠道微生物组的空间多组学数据。拥有两个数据集将使我们能够使用领域专家的知识,参考模型和模拟研究来评估综合方法的性能。这些研究将为揭示生物异质性和空间特征提供新的分析工具,用于空间多组学的预测和推理。这些工具将作为开放源码库提供,以方便使用。我们的工作可能会改变包括空间在内的多种数据模式。因此,这项工作将影响许多学科,如生物学,生态学,农业,金融。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jeganathan, Pratheepa其他文献

A Statistical Perspective on the Challenges in Molecular Microbial Biology.
Sub-communities of the vaginal microbiota in pregnant and non-pregnant women.
  • DOI:
    10.1098/rspb.2023.1461
  • 发表时间:
    2023-11-29
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Symul, Laura;Jeganathan, Pratheepa;Costello, Elizabeth K.;France, Michael;Bloom, Seth M.;Kwon, Douglas S.;Ravel, Jacques;Relman, David A.;Holmes, Susan
  • 通讯作者:
    Holmes, Susan

Jeganathan, Pratheepa的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jeganathan, Pratheepa', 18)}}的其他基金

Integrative Approaches for Spatial and Multi-Omics data
空间和多组学数据的综合方法
  • 批准号:
    DGECR-2022-00465
  • 财政年份:
    2022
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Discovery Launch Supplement

相似国自然基金

Lagrangian origin of geometric approaches to scattering amplitudes
  • 批准号:
    24ZR1450600
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Spatial and Critical Approaches to Industrial Heritage Landscapes
工业遗产景观的空间和批判方法
  • 批准号:
    EP/X024253/1
  • 财政年份:
    2023
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Fellowship
eMB: Collaborative Research: New mathematical approaches for understanding spatial synchrony in ecology
eMB:协作研究:理解生态学空间同步的新数学方法
  • 批准号:
    2325078
  • 财政年份:
    2023
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Standard Grant
eMB: Collaborative Research: New mathematical approaches for understanding spatial synchrony in ecology
eMB:协作研究:理解生态学空间同步的新数学方法
  • 批准号:
    2325076
  • 财政年份:
    2023
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Standard Grant
eMB: Collaborative Research: New mathematical approaches for understanding spatial synchrony in ecology
eMB:协作研究:理解生态学空间同步的新数学方法
  • 批准号:
    2325077
  • 财政年份:
    2023
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Standard Grant
Novel spatial-motor approaches targeting post-stroke spatial neglect and gait deficits
针对中风后空间忽视和步态缺陷的新型空间运动方法
  • 批准号:
    10606908
  • 财政年份:
    2023
  • 资助金额:
    $ 1.38万
  • 项目类别:
Development of novel genomic approaches for profiling cellular temporal-spatial dynamics of neurogenesis in Aging and Alzheimer's disease
开发新的基因组方法来分析衰老和阿尔茨海默病神经发生的细胞时空动力学
  • 批准号:
    10434335
  • 财政年份:
    2022
  • 资助金额:
    $ 1.38万
  • 项目类别:
Physiological, Computational, and Psychological Approaches to Understanding Spatial Vision
理解空间视觉的生理、计算和心理学方法
  • 批准号:
    10446418
  • 财政年份:
    2022
  • 资助金额:
    $ 1.38万
  • 项目类别:
Physiological, Computational, and Psychological Approaches to Understanding Spatial Vision
理解空间视觉的生理、计算和心理学方法
  • 批准号:
    10620223
  • 财政年份:
    2022
  • 资助金额:
    $ 1.38万
  • 项目类别:
Developing Random Field based novel approaches for spatial transcriptomics
开发基于随机场的空间转录组学新方法
  • 批准号:
    2217515
  • 财政年份:
    2022
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Standard Grant
Behavioural and neuroimaging approaches to understanding the neurocognitive basis of real-world spatial navigation
行为和神经影像方法来理解现实世界空间导航的神经认知基础
  • 批准号:
    RGPIN-2021-04335
  • 财政年份:
    2022
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了