Physiological, Computational, and Psychological Approaches to Understanding Spatial Vision
理解空间视觉的生理、计算和心理学方法
基本信息
- 批准号:10446418
- 负责人:
- 金额:$ 41.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAreaAttentionBeliefBrainCell modelCellsDataDependenceDiseaseEye MovementsFutureLateralLeadLesionLocationMeasuresMemoryMethodsModelingMonkeysMorphologic artifactsMotionMotorNeuronsParietal LobePatientsPatternPerceptionPhysiologicalPositioning AttributeProceduresPsychophysicsReportingResolutionRetinaSaccadesSamplingSignal TransductionStimulusTestingTherapeuticTimeTrainingUpdateVisualVisual PerceptionWeightattentional modulationfrontal eye fieldslateral intraparietal areaneural networknovel therapeuticspredictive modelingpsychologicreceptive fieldresponseretinal imagingsimulationspatial vision
项目摘要
Project Summary
Every time we make a saccade, the retinal image of the world changes drastically, yet the world appears stable
to us. Patients with parietal cortex lesions do not have the ability view the world stably across saccades. This
trans-saccadic visual stability (TSVS) problem has received renewed attention since the discovery of receptive-
field (RF) remapping: Some cells in the lateral intraparietal area (LIP), frontal eye fields (FEF), and other brain
areas shift their current, pre-saccadic RFs (cRFs) toward their future, post-saccadic RFs (fRFs), even before the
saccadic onset (forward shift). These cells likely contribute to TSVS by predicting and comparing retinal images
across saccades. However, under certain circumstances FEF neurons shift their RFs toward the saccade target
(convergent shift), instead of toward fRFs (forward shift). This raises many important questions including 1)
whether the forward RF shift, a leading physiological substrate for TSVS, actually exists in LIP and FEF; 2)
whether these areas differ in their peri-saccadic RF dynamics; 3) whether LIP and FEF cells have both
convergent and forward shifts; and 4) if so, what underlying mechanisms could explain them. Furthermore, it is
widely assumed that the forward and convergent RF shifts produce, respectively, the observed forward and
convergent mislocalization around the saccade onset, but the assumption has not been carefully evaluated. Here
we will address these questions by simultaneously recording LIP and FEF neurons, modeling circuit mechanisms
for the RF shifts, analyzing the shifts' perceptual implications, and testing new predictions. Our preliminary data
suggest that on average, LIP and FEF are biased toward the forward and convergent shifts, respectively.
Importantly, the convergent shift first appears in a delay period when the saccade command, and thus its
corollary discharge (CD), are suppressed. This leads to our hypothesis that unlike the forward shift known to
be produced by the saccade CD, the convergent shift is produced by saccade planning/attention to the target.
While CD-gated lateral connections can explain the forward shift, we further hypothesize that attention-
modulated center/surround connections account for the convergent shift. We will demonstrate that both
connectivity patterns emerge automatically in neural networks trained on a memory-saccade task related to
TSVS. Perceptually, our analysis indicates that RF shifts in one direction produce either no mislocalization or a
mislocalization in the opposite direction, and that peri-saccadic mislocalization is confounded by mislocalization
induced by retinal motion alone. We will test many predictions of our models including that the forward shift
grows with saccadic amplitude whereas the convergent shift peaks at an intermediate distance between cells'
cRFs and the target, and that convergent RF shifts during the delay period generate a divergent mislocalization.
The project will help resolve a main controversy regarding RF shifts in LIP and FEF, provide a mechanistic and
functional account of the two shift types, and clarify the perceptual consequences of RF shifts. Understanding
TSVS may lead to therapeutic strategies for patients whose brain lesions have interfered with it.
项目摘要
每次我们扫视一次,世界的视网膜图像就会发生巨大的变化,但世界似乎是稳定的
敬我们。患有顶叶皮质损害的患者没有能力跨眼跳稳定地观察世界。这
自接受性视觉稳定性被发现以来,跨视跳视觉稳定性(TSVs)问题受到了新的关注。
视野(RF)重新映射:外侧顶叶内区域(LIP)、额叶眼野(FEF)和其他脑中的一些细胞
地区将他们目前的扫视前RFs(CRF)转移到他们未来的扫视后RFs(FRF),甚至在
眼跳发作(前移)。这些细胞可能通过预测和比较视网膜图像而导致TSVs
在扫视中。然而,在某些情况下,FEF神经元会将其RFs移向眼跳目标
(收敛移位),而不是朝向fRF(前移)。这引发了许多重要问题,包括1)
LIP和FEF中是否真的存在TSV的主要生理底物--RF正向移位;2)
3)LIP和FEF细胞是否同时具有这两种功能
收敛和向前转移;以及4)如果是这样,什么潜在的机制可以解释它们。此外,它是
广泛假设,正向和收敛的RF漂移分别产生观测到的正向和
眼跳发作前后的会聚定位错误,但这一假设尚未得到仔细评估。这里
我们将通过同时记录LIP和FEF神经元、模拟电路机制来解决这些问题
对于射频频移,分析这些频移的感知含义,并测试新的预测。我们的初步数据
提示平均而言,LIP和FEF分别偏向于前移和收敛移位。
重要的是,收敛偏移首先出现在扫视命令的延迟时间段内,因此其
随之而来的放电(CD)被抑制。这导致了我们的假设,与已知的向前移动不同
由扫视CD产生的会聚转移是由对目标的扫视计划/注意产生的。
虽然CD门控的侧向连接可以解释向前移动,但我们进一步假设注意力-
调制的中心/环绕连接是收敛移位的原因。我们将证明这两个
在记忆扫视任务中训练的神经网络中自动出现连接模式,该任务与
电视节目。从认知上讲,我们的分析表明,射频在一个方向上的移位不会产生误局部化或
相反方向的错误定位,以及眼球周围的错误定位被错误定位所混淆
仅由视网膜运动引起的。我们将测试我们的模型的许多预测,包括前移
以跳动幅度增长,而收敛移位在细胞之间的中间距离处达到峰值
CRF和目标,并且在延迟期内收敛的RF漂移产生发散的错位化。
该项目将有助于解决关于LIP和FEF中的射频移位的主要争议,提供一种机械和
两种移位类型的功能描述,并阐明射频移位的知觉后果。理解
TSV可能会为脑损伤干扰它的患者提供治疗策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MICHAEL E. GOLDBERG其他文献
MICHAEL E. GOLDBERG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MICHAEL E. GOLDBERG', 18)}}的其他基金
Physiological, Computational, and Psychological Approaches to Understanding Spatial Vision
理解空间视觉的生理、计算和心理学方法
- 批准号:
10620223 - 财政年份:2022
- 资助金额:
$ 41.08万 - 项目类别:
相似国自然基金
层出镰刀菌氮代谢调控因子AreA 介导伏马菌素 FB1 生物合成的作用机理
- 批准号:2021JJ40433
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
寄主诱导梢腐病菌AreA和CYP51基因沉默增强甘蔗抗病性机制解析
- 批准号:32001603
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
AREA国际经济模型的移植.改进和应用
- 批准号:18870435
- 批准年份:1988
- 资助金额:2.0 万元
- 项目类别:面上项目
相似海外基金
The attention area estimation and safety evaluation of BCI using SSVEP
基于SSVEP的BCI注意力区域估计和安全性评估
- 批准号:
26870684 - 财政年份:2014
- 资助金额:
$ 41.08万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Influence of attention and eye movement signals on population coding in area V4
注意和眼动信号对V4区群体编码的影响
- 批准号:
8189126 - 财政年份:2009
- 资助金额:
$ 41.08万 - 项目类别:
Influence of attention and eye movement signals on population coding in area V4
注意和眼动信号对V4区群体编码的影响
- 批准号:
8217067 - 财政年份:2009
- 资助金额:
$ 41.08万 - 项目类别:
Influence of attention and eye movement signals on population coding in area V4
注意和眼动信号对V4区群体编码的影响
- 批准号:
8423034 - 财政年份:2009
- 资助金额:
$ 41.08万 - 项目类别:
Influence of attention and eye movement signals on population coding in area V4
注意和眼动信号对V4区群体编码的影响
- 批准号:
7588129 - 财政年份:2009
- 资助金额:
$ 41.08万 - 项目类别:
Study on Land Use Control of Urbanization Control Area which paid attention to District where eased Development Permission System
关注放宽开发许可制度区的城镇化控制区土地利用控制研究
- 批准号:
19760423 - 财政年份:2007
- 资助金额:
$ 41.08万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Synthetic research about restructuring of the dialect, area word education that it paid attention to the communication consciousness, function
注重交际意识、功能的方言、方言教育重构综合研究
- 批准号:
15330183 - 财政年份:2003
- 资助金额:
$ 41.08万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Changing sea levels and (semi-)terrestrial landscape development in the Baltic Sea coastal area, with special attention to the role of the Darss Sill
波罗的海沿岸地区的海平面变化和(半)陆地景观发展,特别关注达斯海床的作用
- 批准号:
5385409 - 财政年份:2002
- 资助金额:
$ 41.08万 - 项目类别:
Research Units














{{item.name}}会员




