Developing scalable algorithms to incorporate unstructured electronic health records for causal inference based on real-world data
开发可扩展的算法以合并非结构化电子健康记录,以基于真实世界数据进行因果推断
基本信息
- 批准号:10581591
- 负责人:
- 金额:$ 64.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-01 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAlgorithmsClinicalClinical ResearchCodeCohort StudiesComparative Effectiveness ResearchComplexConfounding Factors (Epidemiology)ConsumptionDataData SetData SourcesDatabasesElectronic Health RecordElementsEmpirical ResearchEnsureEnvironmentEvaluationFutureHealthcareHealthcare SystemsInfluentialsKnowledgeKnowledge acquisitionLeftLinkMachine LearningManualsMassachusettsMaximum Likelihood EstimateMedicaidMedicalMedicareMethodsModelingNamesNatural Language ProcessingNorth CarolinaOperative Surgical ProceduresPatient CarePatient-Focused OutcomesPatientsPatternPerformancePhysiciansProbabilityPropertyProxyRandomized, Controlled TrialsReportingResearchResearch DesignResearch PersonnelRiskRisk FactorsSemanticsSeveritiesSpecific qualifier valueStratificationStructureSymptomsSystemTechniquesTestingTexasTextTherapeuticTimeTrainingTreatment outcomeValidationWorkanalytical methodcare deliverycomparative effectiveness studycomparison controlcomparison groupcomputerizedcostdisease prognosisdisorder riskeHealthelectronic health databaseelectronic health informationelectronic health record systemevidence baseflexibilityhealth care service utilizationhigh dimensionalityimprovedinnovationmachine learning methodnovel strategiesoperationpreservationrandomized trialresearch studyroutine caresafety studysimulationsoundtooltreatment choiceunstructured data
项目摘要
Project Summary/Abstract
The routine operation of the US Healthcare system produces an abundance of electronically-stored data that
captures the care of patients as it is provided in settings outside of controlled research environments. The
potential for utilizing these data to inform future treatment choices and improve patient care and outcomes of all
patients in the very system that generates the data is widely acknowledged. Given these key properties of the
routine-care data and the abundance of electronic healthcare databases covering millions of patients, it is critical
to strengthen the rigor of analyses of such data. Our group has previously developed an analytic approach to
reduce bias when analyzing routine-care databases, which has proven effective in more than 50 empirical
research studies across a range of topics and data sources. However, this approach currently cannot incorporate
free-text information that is recorded in electronic health records, such as clinical notes and reports. This
limitation has left a large amount of rich patient information underutilized for clinical research. We thus aim to
adapt and refine a set of established computerized natural language processing algorithms that can identify and
extract useful information from the clinical notes and reports in electronic health records and incorporate them
into our validated analytical approach for balancing background risks of different comparison groups, a key step
to ensure fair evaluation when comparing different therapeutic options. To test this newly integrated and
augmented approach, we will implement and adapt it in simulation studies where we can evaluate and improve
the performance of these new analytic methods in a controlled but realistic fashion. In addition, we will assess
the performance of our new approach in 8 practical studies comparing medical or surgical treatments that are
highly relevant to patients. To ensure highest level of data completeness and quality, we have linked multiple
healthcare utilization (claims) databases, spanning from 2007 to 2016, with 3 electronic health records systems,
including one each in Massachusetts, North Carolina, and Texas. This data will allow testing of our newly
integrated approach in a variety of care delivery systems and data environments, which will be very informative
for the application of our products in the real-world settings.
项目总结/摘要
美国医疗保健系统的日常运作产生了大量的电子存储数据,
在受控研究环境之外的环境中提供患者护理。的
利用这些数据为未来的治疗选择提供信息,并改善患者护理和所有患者的结局
病人在生成数据的系统中的作用得到了广泛的认可。考虑到
常规护理数据和涵盖数百万患者的丰富电子医疗数据库,
加强对这些数据分析的严谨性。我们小组以前已经开发了一种分析方法,
在分析常规护理数据库时减少偏倚,这在50多个经验性数据库中已被证明是有效的。
对一系列主题和数据源进行研究。然而,这种方法目前无法纳入
记录在电子健康记录中的自由文本信息,如临床笔记和报告。这
限制使得大量丰富的患者信息未被充分利用于临床研究。因此,我们的目标是
调整和完善一套已建立的计算机化自然语言处理算法,可以识别和
从电子健康记录的临床记录和报告中提取有用的信息,并将其纳入
在我们经过验证的平衡不同对照组背景风险的分析方法中,
以确保在比较不同的治疗方案时进行公平的评价。为了测试这个新集成的,
增强方法,我们将在模拟研究中实施和调整它,以便我们可以评估和改进
这些新的分析方法的性能在一个可控的,但现实的方式。此外,我们将评估
我们的新方法在8项比较内科或外科治疗的实际研究中的表现,
与患者高度相关。为了确保最高水平的数据完整性和质量,我们将多个
2007年至2016年的医疗保健利用(索赔)数据库,包括3个电子健康记录系统,
包括马萨诸塞州、北卡罗来纳州和德克萨斯州各一个。这些数据将允许测试我们新的
在各种护理提供系统和数据环境中的综合方法,这将是非常翔实的
我们的产品在现实世界中的应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JOSHUA K LIN其他文献
JOSHUA K LIN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JOSHUA K LIN', 18)}}的其他基金
A targeted analytical framework to optimize posthospitalization delirium pharmacotherapy in patients with Alzheimers disease and related dementias
优化阿尔茨海默病和相关痴呆患者出院后谵妄药物治疗的有针对性的分析框架
- 批准号:
10634940 - 财政年份:2023
- 资助金额:
$ 64.48万 - 项目类别:
Deprescribing antipsychotics in patients with Alzheimers disease and related dementias and behavioral disturbance in skilled nursing facilities
在熟练护理机构中取消阿尔茨海默病及相关痴呆症和行为障碍患者的抗精神病药物处方
- 批准号:
10634934 - 财政年份:2023
- 资助金额:
$ 64.48万 - 项目类别:
Effectiveness and Safety of Transcatheter Left Atrial Appendage Occlusion vs. Anticoagulation in Older Adults with Atrial Fibrillation and Alzheimer's Disease and Related dementias
经导管左心耳封堵术与抗凝治疗对患有心房颤动、阿尔茨海默病及相关痴呆症的老年人的有效性和安全性
- 批准号:
10672458 - 财政年份:2022
- 资助金额:
$ 64.48万 - 项目类别:
Effectiveness and Safety of Transcatheter Left Atrial Appendage Occlusion vs. Anticoagulation in Older Adults with Atrial Fibrillation and Alzheimer's Disease and Related dementias
经导管左心耳封堵术与抗凝治疗对患有心房颤动、阿尔茨海默病及相关痴呆症的老年人的有效性和安全性
- 批准号:
10443345 - 财政年份:2022
- 资助金额:
$ 64.48万 - 项目类别:
Developing scalable algorithms to incorporate unstructured electronic health records for causal inference based on real-world data
开发可扩展的算法以合并非结构化电子健康记录,以基于真实世界数据进行因果推断
- 批准号:
10372142 - 财政年份:2020
- 资助金额:
$ 64.48万 - 项目类别:
Developing dynamic prognostic and risk-stratification models for informing prescribing decisions in older adults with Coronavirus Disease 2019
开发动态预后和风险分层模型,为患有 2019 年冠状病毒病的老年人的处方决策提供信息
- 批准号:
10189838 - 财政年份:2019
- 资助金额:
$ 64.48万 - 项目类别:
Improving comparative effectiveness research through electronic health records continuity cohorts
通过电子健康记录连续性队列改进比较有效性研究
- 批准号:
9983157 - 财政年份:2017
- 资助金额:
$ 64.48万 - 项目类别:
Improving comparative effectiveness research through electronic health records continuity cohorts
通过电子健康记录连续性队列改进比较有效性研究
- 批准号:
9766389 - 财政年份:2017
- 资助金额:
$ 64.48万 - 项目类别:
Improving comparative effectiveness research through electronic health records continuity cohorts
通过电子健康记录连续性队列改进比较有效性研究
- 批准号:
9365420 - 财政年份:2017
- 资助金额:
$ 64.48万 - 项目类别:
相似海外基金
Exploring the Potential Clinical Application of Pulse Arrival Time for Assessing Arterial Stiffness Using Machine Learning Algorithms
使用机器学习算法探索脉冲到达时间评估动脉僵硬度的潜在临床应用
- 批准号:
2649903 - 财政年份:2022
- 资助金额:
$ 64.48万 - 项目类别:
Studentship
Implementing clinical decision support for improved outpatient neurorehabilitation post-stroke and spinal cord injury through the integration of wearable technology and deep learning algorithms.
通过集成可穿戴技术和深度学习算法,实施临床决策支持,以改善中风和脊髓损伤后的门诊神经康复。
- 批准号:
475572 - 财政年份:2022
- 资助金额:
$ 64.48万 - 项目类别:
Studentship Programs
SCH: Heterogenous, dynamic synthetic data: From algorithms to clinical applications
SCH:异构动态合成数据:从算法到临床应用
- 批准号:
10559690 - 财政年份:2022
- 资助金额:
$ 64.48万 - 项目类别:
SCH: Heterogenous, dynamic synthetic data: From algorithms to clinical applications
SCH:异构动态合成数据:从算法到临床应用
- 批准号:
10437156 - 财政年份:2022
- 资助金额:
$ 64.48万 - 项目类别:
Development and clinical interpretation of machine learning emergency department suicide prediction algorithms using electronic health records and claims
使用电子健康记录和索赔的机器学习急诊科自杀预测算法的开发和临床解释
- 批准号:
10277514 - 财政年份:2021
- 资助金额:
$ 64.48万 - 项目类别:
Development and clinical interpretation of machine learning emergency department suicide prediction algorithms using electronic health records and claims
使用电子健康记录和索赔的机器学习急诊科自杀预测算法的开发和临床解释
- 批准号:
10462646 - 财政年份:2021
- 资助金额:
$ 64.48万 - 项目类别:
Development and clinical interpretation of machine learning emergency department suicide prediction algorithms using electronic health records and claims
使用电子健康记录和索赔的机器学习急诊科自杀预测算法的开发和临床解释
- 批准号:
10631239 - 财政年份:2021
- 资助金额:
$ 64.48万 - 项目类别:
Adaptive randomized designs for cancer clinical trials by using integer algorithms and exact Monte Carlo methods
使用整数算法和精确蒙特卡罗方法进行癌症临床试验的自适应随机设计
- 批准号:
10329938 - 财政年份:2021
- 资助金额:
$ 64.48万 - 项目类别:
Adaptive randomized designs for cancer clinical trials by using integer algorithms and exact Monte Carlo methods
使用整数算法和精确蒙特卡罗方法进行癌症临床试验的自适应随机设计
- 批准号:
10405326 - 财政年份:2021
- 资助金额:
$ 64.48万 - 项目类别:
Development and clinical interpretation of machine learning emergency department suicide prediction algorithms using electronic health records and claims
使用电子健康记录和索赔的机器学习急诊科自杀预测算法的开发和临床解释
- 批准号:
10809977 - 财政年份:2021
- 资助金额:
$ 64.48万 - 项目类别: