Homogeneous spaces and dimension theory

齐次空间和维度理论

基本信息

  • 批准号:
    RGPIN-2015-06200
  • 负责人:
  • 金额:
    $ 0.8万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Homogeneity is a very natural concept, existing in various areas of science. In topology, a space is called homogeneous if for every two of its points there exists a homeomorphism that sends one of these points to the other. Intuitively, it means that the space looks the same around each of its points. Many topological spaces, that model real-life phenomena, are homogeneous, e.g. Euclidean manifolds, infinite-dimensional manifolds, solenoids, Menger compacta, etc. Many of these spaces also exhibit a fractal-like behaviour. However, not all fractals are homogeneous. Despite the importance of the concept, topological homogeneity is still not well-understood. One of the goals of my program is the study of homogeneous spaces. In particular, I am interested in the structure of "nice" homogeneous spaces, i.e. those which are absolute neighbourhood retracts (ANRs). Note that all manifolds and, more generally, polyhedra are ANRs. However, there are many exotic examples of ANRs that differ substantially from manifolds. One of the central problems I would like to work on is the Bing-Borsuk conjecture: is every finite-dimensional homogeneous ANR-compactum a manifold? Jakobsche showed in 1980 that the Bing-Borsuk conjecture implies the famous Poincare conjecture, recently proved by Grigori Perelman.Another objective is to develop a unified approach to construction of homogeneous spaces.The second part of my program is concerned with infinite-dimensional topology. Infinite-dimensional spaces play an important role in various areas of mathematics and its applications in physics. There are different types of infinite-dimensional spaces. My goal is to find characterizing properties of some of these types and improve our understanding of differences between these types.The third part of my proposal is devoted to asymptotic dimension. While the classical approach in topology is to study spaces, their properties, and invariants on the "small scale", asymptotic topology analyzes "large scale" structure of spaces. There are several analogs of dimension-like invariants that are designed to work in the large scale category. Some of these invariants are related to Property A, instroduced by Guoliang Yu in 2000. I wish to better understand some of these connections as well as to generalize certain theorems and constructions from usual dimension theory on the case of asymptotic dimension.Research in topology, and in particular in dimension theory, helps to advance fundamental scientific knowledge. It also has applications in physics, data analysis, economics, visualization, and other areas.
同质性是一个非常自然的概念,存在于科学的各个领域。在拓扑学中,一个空间被称为齐次的,如果对于它的每两个点存在一个同胚,将其中一个点发送到另一个点。直观地说,这意味着空间在其每个点周围看起来都是一样的。许多拓扑空间,模型的现实生活中的现象,是齐次的,例如欧几里得流形,无限维流形,Menger流形,等等,许多这些空间也表现出分形的行为。然而,并非所有的分形都是均匀的。尽管这个概念很重要,但拓扑同质性仍然没有得到很好的理解。我的计划的目标之一是研究齐次空间。特别是,我感兴趣的结构“好”齐性空间,即那些是绝对邻域收缩(ANR)。请注意,所有流形,更一般地说,多面体都是ANR。然而,有许多奇异的ANR例子与流形有很大的不同。其中一个中心问题,我想工作的是宾博苏克猜想:是每一个有限维齐次ANR-紧流形?Jakobsche在1980年证明了Bing-Borsuk猜想蕴含着著名的Poincare猜想,最近由Grigori Perelman证明了这一猜想。另一个目标是发展一种统一的方法来构造齐性空间。我的计划的第二部分是关于无限维拓扑。无限维空间在数学的各个领域及其在物理学中的应用中起着重要的作用。有不同类型的无限维空间。我的目标是找到其中一些类型的特征性质,并提高我们对这些类型之间差异的理解。我建议的第三部分致力于渐近维数。拓扑学的经典方法是研究空间、它们的性质和“小尺度”上的不变量,而渐近拓扑学分析空间的“大尺度”结构。有几个类似于维度不变量的设计用于大尺度类别。这些不变量中的一些与性质A有关,性质A由Guoliang Yu在2000年引入。我希望更好地了解这些连接以及推广某些定理和建设从通常的维数理论的情况下,渐近dimensional.Research拓扑,特别是在维数理论,有助于推进基础科学知识。它还在物理学,数据分析,经济学,可视化和其他领域中应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Karassev, Alexandre其他文献

Karassev, Alexandre的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Karassev, Alexandre', 18)}}的其他基金

Homogeneous spaces and dimension theory
齐次空间和维度理论
  • 批准号:
    RGPIN-2015-06200
  • 财政年份:
    2021
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Homogeneous spaces and dimension theory
齐次空间和维度理论
  • 批准号:
    RGPIN-2015-06200
  • 财政年份:
    2018
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Homogeneous spaces and dimension theory
齐次空间和维度理论
  • 批准号:
    RGPIN-2015-06200
  • 财政年份:
    2017
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Homogeneous spaces and dimension theory
齐次空间和维度理论
  • 批准号:
    RGPIN-2015-06200
  • 财政年份:
    2016
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Homogeneous spaces and dimension theory
齐次空间和维度理论
  • 批准号:
    RGPIN-2015-06200
  • 财政年份:
    2015
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Dimensions, universal spaces, and continua
维度、通用空间和连续体
  • 批准号:
    288319-2009
  • 财政年份:
    2014
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Dimensions, universal spaces, and continua
维度、通用空间和连续体
  • 批准号:
    288319-2009
  • 财政年份:
    2012
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Dimensions, universal spaces, and continua
维度、通用空间和连续体
  • 批准号:
    288319-2009
  • 财政年份:
    2011
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Dimensions, universal spaces, and continua
维度、通用空间和连续体
  • 批准号:
    288319-2009
  • 财政年份:
    2010
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Dimensions, universal spaces, and continua
维度、通用空间和连续体
  • 批准号:
    288319-2009
  • 财政年份:
    2009
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Bergman空间上的Toeplitz算子及Hankel算子的性质
  • 批准号:
    11126061
  • 批准年份:
    2011
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目
分形上的分析及其应用
  • 批准号:
    10471150
  • 批准年份:
    2004
  • 资助金额:
    15.0 万元
  • 项目类别:
    面上项目

相似海外基金

Homogeneous spaces and dimension theory
齐次空间和维度理论
  • 批准号:
    RGPIN-2015-06200
  • 财政年份:
    2021
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Study on dimension and topological spaces in coarse geometry
粗几何中的维数和拓扑空间研究
  • 批准号:
    19K03467
  • 财政年份:
    2019
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Curvature-dimension condition and measure concentration on generalized metric measure spaces
广义度量测度空间上的曲率维数条件和测度集中
  • 批准号:
    19K14532
  • 财政年份:
    2019
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Study of metric measure spaces with curvature-dimension conditions and its applications to Riemannian geometry
曲率维数条件下的度量测度空间研究及其在黎曼几何中的应用
  • 批准号:
    18K13412
  • 财政年份:
    2018
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Homogeneous spaces and dimension theory
齐次空间和维度理论
  • 批准号:
    RGPIN-2015-06200
  • 财政年份:
    2018
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Homogeneous spaces and dimension theory
齐次空间和维度理论
  • 批准号:
    RGPIN-2015-06200
  • 财政年份:
    2017
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Extension of soliton theory to noncommutative spaces and higher-dimension with application to string theory and integrable systems
将孤子理论扩展到非交换空间和高维,并应用于弦理论和可积系统
  • 批准号:
    16K05318
  • 财政年份:
    2016
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Homogeneous spaces and dimension theory
齐次空间和维度理论
  • 批准号:
    RGPIN-2015-06200
  • 财政年份:
    2016
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Homogeneous spaces and dimension theory
齐次空间和维度理论
  • 批准号:
    RGPIN-2015-06200
  • 财政年份:
    2015
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Asymptotic dimension, topological dimension on metric spaces and topological structures of computational models
渐近维数、度量空间上的拓扑维数和计算模型的拓扑结构
  • 批准号:
    26400089
  • 财政年份:
    2014
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了