Accelerating Manycore Fluid Flow Predictions Including Wave/Ship Motions Using Parareal
使用 Parareal 加速众核流体流动预测,包括波浪/船舶运动
基本信息
- 批准号:RGPIN-2017-04247
- 负责人:
- 金额:$ 1.82万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Exascale high-performance computing trends point to substantial computing resources at a low cost moving into the future, but new software designs and parallelization strategies are required to take full advantage of these emerging manycore hardware systems. Over the past six years, the applicant has led the development of a manycore Computational Fluid Dynamics (CFD) code called EXN/Aero that is now demonstrating significant solution speed-up (using GPUs) versus traditional CPU solutions obtained with spatial domain decompositions. The EXN/Aero development has also included a combined space-time parallel computing approach called parareal. Here, the domain decomposition includes both space and time, and is an emerging research area in exascale computing since it provides a way to reduce computing time when a highly parallel application is memory-bound. There is, however, a need to refine the methodology for high-Reynolds number and multi-physics CFD applications. The applications of choice for the proposed research is in the area of environmental and ship/submarine ocean flows. Building an efficient set 3D unsteady turbulent flow CFD models in these areas is important for comprehensive acoustic source modeling, including subsequent input into a wide range of signatures studies. The applicant has worked for a number of years with Defense Research and Development Canada on their submarine program (developing a range of CFD simulation capabilities including EXN/Aero) and the extension to ships is therefore a natural one. In particular, the proposal will focus on objectives that develop the parareal method for ship simulations that include the important couplings of waves, ship motion and propulsion (including cavitation). All of these aspects are important, when coupled, to predicting the highly turbulent flow environment from which noise sources arise. The research will allow Canadian industry and government to tap into future CFD supercomputing technologies which will be essential to developing complex systems such as ship and submarine platforms, and environmental flows such as that for tidal energy development.
Exascale高性能计算的趋势指向未来以低成本获得大量计算资源,但需要新的软件设计和并行化策略来充分利用这些新兴的众核硬件系统。在过去的六年中,申请人领导了名为EXN/Aero的多核计算流体动力学(CFD)代码的开发,该代码现在证明了与通过空间域分解获得的传统CPU解决方案相比,解决方案速度显著提高(使用GPU)。EXN/Aero的开发还包括一种称为parareal的时空并行计算方法。在这里,区域分解包括空间和时间,是一个新兴的研究领域,在exascale计算,因为它提供了一种方法,以减少计算时间时,一个高度并行的应用程序是内存限制。然而,有必要改进高雷诺数和多物理场CFD应用的方法。拟议研究的应用选择是在环境和船舶/潜艇海洋流动领域。 在这些领域建立一套有效的三维非定常湍流CFD模型对于全面的声源建模非常重要,包括随后输入到广泛的特征研究中。 申请人已与加拿大国防研究与发展部合作多年,致力于其潜艇项目(开发一系列CFD模拟功能,包括EXN/Aero),因此扩展到船舶是很自然的。特别是,该提案将侧重于开发船舶模拟的平行区域方法的目标,其中包括波浪、船舶运动和推进(包括空化)的重要耦合。 所有这些方面都很重要,当耦合时,预测噪声源产生的高度湍流环境。这项研究将使加拿大工业和政府能够利用未来的CFD超级计算技术,这对于开发船舶和潜艇平台等复杂系统以及潮汐能开发等环境流至关重要。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gerber, Andrew其他文献
Discriminating risk and resilience endophenotypes from lifetime illness effects in familial major depressive disorder.
在家族重大抑郁症中区分风险和弹性内表型与终生疾病的影响。
- DOI:
10.1001/jamapsychiatry.2013.4048 - 发表时间:
2014-02 - 期刊:
- 影响因子:25.8
- 作者:
Peterson, Bradley S.;Wang, Zhishun;Horga, Guillermo;Warner, Virginia;Rutherford, Bret;Klahr, Kristin W.;Graniello, Barbara;Wickramaratne, Priya;Garcia, Felix;Yu, Shan;Hao, Xuejun;Adams, Phillip B.;Qian, Ming;Liu, Jun;Gerber, Andrew;Weissman, Myrna M. - 通讯作者:
Weissman, Myrna M.
Gerber, Andrew的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gerber, Andrew', 18)}}的其他基金
Accelerating Manycore Fluid Flow Predictions Including Wave/Ship Motions Using Parareal
使用 Parareal 加速众核流体流动预测,包括波浪/船舶运动
- 批准号:
RGPIN-2017-04247 - 财政年份:2021
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Accelerating Manycore Fluid Flow Predictions Including Wave/Ship Motions Using Parareal
使用 Parareal 加速众核流体流动预测,包括波浪/船舶运动
- 批准号:
RGPIN-2017-04247 - 财政年份:2020
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Accelerating Manycore Fluid Flow Predictions Including Wave/Ship Motions Using Parareal
使用 Parareal 加速众核流体流动预测,包括波浪/船舶运动
- 批准号:
RGPIN-2017-04247 - 财政年份:2019
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Accelerating Manycore Fluid Flow Predictions Including Wave/Ship Motions Using Parareal
使用 Parareal 加速众核流体流动预测,包括波浪/船舶运动
- 批准号:
RGPIN-2017-04247 - 财政年份:2018
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Accelerating Manycore Fluid Flow Predictions Including Wave/Ship Motions Using Parareal
使用 Parareal 加速众核流体流动预测,包括波浪/船舶运动
- 批准号:
RGPIN-2017-04247 - 财政年份:2017
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Transient Heat Flow Simulations for Assessing the Performance of Radiant Panel Installations Under Concrete Building Floors
用于评估混凝土建筑地板下辐射板安装性能的瞬态热流模拟
- 批准号:
520254-2017 - 财政年份:2017
- 资助金额:
$ 1.82万 - 项目类别:
Engage Grants Program
Combined full-physics aircraft wake and atmospheric modelling of droplet deposition
液滴沉积的全物理飞机尾流和大气建模相结合
- 批准号:
412731-2011 - 财政年份:2015
- 资助金额:
$ 1.82万 - 项目类别:
Collaborative Research and Development Grants
Accelerated multiphase flow prediction methods of phase transition, droplet dynamics and efficiency in high-speed vapor flows
高速蒸汽流中相变、液滴动力学和效率的加速多相流预测方法
- 批准号:
238656-2011 - 财政年份:2015
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Accelerated multiphase flow prediction methods of phase transition, droplet dynamics and efficiency in high-speed vapor flows
高速蒸汽流中相变、液滴动力学和效率的加速多相流预测方法
- 批准号:
238656-2011 - 财政年份:2014
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Combined full-physics aircraft wake and atmospheric modelling of droplet deposition
液滴沉积的全物理飞机尾流和大气建模相结合
- 批准号:
412731-2011 - 财政年份:2014
- 资助金额:
$ 1.82万 - 项目类别:
Collaborative Research and Development Grants
相似海外基金
CSR: Small: Processing-in-Memory enabled Manycore Systems to Accelerate Graph Neural Network-based Data Analytics
CSR:小型:启用内存处理的众核系统可加速基于图神经网络的数据分析
- 批准号:
2308530 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Standard Grant
Collaborative Research: SHF: MEDIUM: Smart Integrated Tuning of Parallel Code for Multicore and Manycore Systems
合作研究:SHF:MEDIUM:多核和众核系统并行代码的智能集成调整
- 批准号:
2211983 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Continuing Grant
Collaborative Research: SHF: MEDIUM: Smart Integrated Tuning of Parallel Code for Multicore and Manycore Systems
合作研究:SHF:MEDIUM:多核和众核系统并行代码的智能集成调整
- 批准号:
2211982 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Continuing Grant
Self-Adaptive, Unstructured Mesh, NURBS Enhanced, Polyhedral Schemes, with Hybrid Multicore CPU and Manycore GPU Solution Algorithms, for Nuclear Reac
适用于核反应堆的自适应、非结构化网格、NURBS 增强型、多面体方案,具有混合多核 CPU 和众核 GPU 解决方案算法
- 批准号:
2738301 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Studentship
SHF:Small: Data-Driven Thermal Monitoring and Run-Time Management for Manycore Processor and Chiplet Designs
SHF:Small:适用于多核处理器和小芯片设计的数据驱动热监控和运行时管理
- 批准号:
2113928 - 财政年份:2021
- 资助金额:
$ 1.82万 - 项目类别:
Standard Grant
Accelerating Manycore Fluid Flow Predictions Including Wave/Ship Motions Using Parareal
使用 Parareal 加速众核流体流动预测,包括波浪/船舶运动
- 批准号:
RGPIN-2017-04247 - 财政年份:2021
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: CNS Core: Medium: Exploiting Synergies Between Machine-Learning Algorithms and Hardware Heterogeneity for High-Performance and Reliable Manycore Computing
合作研究:CNS Core:Medium:利用机器学习算法和硬件异构性之间的协同作用实现高性能和可靠的众核计算
- 批准号:
1955353 - 财政年份:2020
- 资助金额:
$ 1.82万 - 项目类别:
Continuing Grant
Collaborative Research: CNS Core: Medium: Exploiting Synergies Between Machine-Learning Algorithms and Hardware Heterogeneity for High-Performance and Reliable Manycore Computing
合作研究:CNS Core:Medium:利用机器学习算法和硬件异构性之间的协同作用实现高性能和可靠的众核计算
- 批准号:
1955196 - 财政年份:2020
- 资助金额:
$ 1.82万 - 项目类别:
Continuing Grant
SaTC: CORE: Small: Language Abstractions for Reconfigurable Hardware Monitors on Manycore Architectures
SaTC:CORE:Small:众核架构上可重新配置硬件监视器的语言抽象
- 批准号:
1936794 - 财政年份:2020
- 资助金额:
$ 1.82万 - 项目类别:
Standard Grant
Automated monitoring and debugging of large scale manycore heterogeneous systems
大规模众核异构系统的自动监控和调试
- 批准号:
507883-2016 - 财政年份:2020
- 资助金额:
$ 1.82万 - 项目类别:
Collaborative Research and Development Grants