SHF:Small: Data-Driven Thermal Monitoring and Run-Time Management for Manycore Processor and Chiplet Designs
SHF:Small:适用于多核处理器和小芯片设计的数据驱动热监控和运行时管理
基本信息
- 批准号:2113928
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2025-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Today’s high-performance processors, and even emerging mobile platforms, are more thermally constrained than ever before due to continuing increase in on-chip power densities. Emerging Chiplet-based heterogeneous integration further exacerbates the thermal problems as heat dissipation is limited due to stacking integration. An increase in temperature exponentially degrades reliability of semiconductor chips and hence is one of the leading concerns today. Furthermore, long-term reliability represents a significant challenge for the design of current nanometer integrated circuits (ICs). To address this trend, runtime power, thermal, resource and long-term reliability management schemes are being studied and implemented in most new generations of processors. However, there are still many challenging problems to be solved such as accurate full-chip run-time thermal and power estimation, workload-dependent true hot-spot detection and prediction, run-time control policy for true hot-spot reliability management, and more intelligent reliability-aware performance maximization in a thermally-constrained multi/many-core and emerging chiplet designs, to name a few. At the same time, deep-learning-based on deep neural networks (DNN) are gaining significant traction, as they provide new computing and optimization paradigms for many of the challenging and complex design-automation problems. The new techniques developed in this project will make future VLSI chips more robust and reliable amid continued aggressive transistor scaling and increasing power density. This project will also contribute significantly to the core knowledge and technologies of emerging machine learning based approaches for full-chip power, thermal modeling and runtime control and optimization techniques for multi/many-core processors. This award will enable the investigator to engage with more female and underrepresented minority students to further contribute to the diversity in US science and technology workforce.This project explores a new generation of data-driven real-time thermal monitoring and smart run-time thermal/power and reliability management techniques by harnessing the latest advances in machine leaning and numerical methods for commercial many-core processors. First, the research will develop new data-driven fast online full-chip thermal- and power-monitoring techniques for commercial many-core processors, and emerging chiplet designs considering practical heat-sink cooling conditions under arbitrary workloads. The project will explore recent advances in DNN networks such as recurrent neural networks (RNN), conditional generative neural networks (CGAN), graph neural networks (GNN) etc. Composable and scalable thermal modeling will also be explored for chiplet design. Second, this project will also explore learning-based thermal/power/reliability management for commercial many-core processors and chiplets based on the proposed DNN-based thermal/power/ reliability monitors considering practical control approaches.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
当今的高性能处理器,甚至新兴的移动的平台,由于片上功率密度的持续增加,比以往任何时候都更加热约束。新兴的基于芯片的异构集成进一步加剧了热问题,因为堆叠集成导致散热受限。温度的增加指数地降低半导体芯片的可靠性,因此是当今的主要关注点之一。此外,长期可靠性代表了当前纳米集成电路(IC)设计的重大挑战。为了应对这一趋势,运行时电源,热,资源和长期可靠性管理计划正在研究和实施的大多数新一代的处理器。然而,仍有许多具有挑战性的问题需要解决,例如精确的全芯片运行时热和功率估计、依赖于工作负载的真实热点检测和预测、用于真实热点可靠性管理的运行时控制策略、以及热约束多/众核和新兴小芯片设计中的更智能的可靠性感知性能最大化,仅举几例。与此同时,基于深度神经网络(DNN)的深度学习正在获得巨大的吸引力,因为它们为许多具有挑战性和复杂的设计自动化问题提供了新的计算和优化范例。 该项目开发的新技术将使未来的VLSI芯片在持续的积极晶体管缩放和不断增加的功率密度中更加坚固和可靠。 该项目还将为新兴的基于机器学习的方法的核心知识和技术做出重大贡献,这些方法用于多/众核处理器的全芯片功率,热建模和运行时控制和优化技术。该项目将利用商用众核处理器的机器学习和数值方法的最新进展,探索新一代数据驱动的实时热监控和智能运行时热/功率和可靠性管理技术。首先,该研究将为商用众核处理器开发新的数据驱动的快速在线全芯片热和功率监控技术,以及考虑任意工作负载下实际散热器冷却条件的新兴小芯片设计。该项目将探索DNN网络的最新进展,如递归神经网络(RNN),条件生成神经网络(CGAN),图形神经网络(GNN)等,还将探索用于小芯片设计的可组合和可扩展的热建模。第二,该项目还将探索基于学习的热/功率/可靠性管理的商业众核处理器和chiplets基于拟议的DNN的热/功率/可靠性监视器考虑实用的控制方法。该奖项反映了NSF的法定使命,并已被认为是值得支持的评估使用基金会的智力价值和更广泛的影响审查标准。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Scaled-CBSC: Scaled counting-based stochastic computing multiplication for improved accuracy
Scaled-CBSC:基于缩放计数的随机计算乘法以提高准确性
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Yu, S.;Tan, S.
- 通讯作者:Tan, S.
Full-Chip Power Density and Thermal Map Characterization for Commercial Microprocessors under Heat Sink Cooling
散热器冷却下商用微处理器的全芯片功率密度和热图表征
- DOI:10.1109/tcad.2021.3088081
- 发表时间:2021
- 期刊:
- 影响因子:2.9
- 作者:Zhang, Jinwei;Sadiqbatcha, Sheriff;OrDea, Michael;Amrouch, Hussam;Tan, Sheldon X.-D.
- 通讯作者:Tan, Sheldon X.-D.
PAALM: Power Density Aware Approximate Logarithmic Multiplier Design
- DOI:10.1145/3566097.3567884
- 发表时间:2023-01
- 期刊:
- 影响因子:0
- 作者:Shuyuan Yu;S. Tan
- 通讯作者:Shuyuan Yu;S. Tan
Electrothermal Simulation and Optimal Design of Thermoelectric Cooler Using Analytical Approach
- DOI:10.1109/tcad.2021.3120533
- 发表时间:2021-10
- 期刊:
- 影响因子:2.9
- 作者:Liang Chen;Sheriff Sadiqbatcha;H. Amrouch;S. Tan
- 通讯作者:Liang Chen;Sheriff Sadiqbatcha;H. Amrouch;S. Tan
Long-Term Aging Impacts on Spatial On-Chip Power Density and Temperature
长期老化对空间片上功率密度和温度的影响
- DOI:10.1109/smacd58065.2023.10192234
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Sachdeva, Sachin;Zhang, Jinwei;Amrouch, Hussam;Tan, Sheldon X.-D.
- 通讯作者:Tan, Sheldon X.-D.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sheldon Tan其他文献
Sheldon Tan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sheldon Tan', 18)}}的其他基金
SHF:Small: Learning-based Fast Analysis and Fixing for Electromigration Damage
SHF:Small:基于学习的电迁移损伤快速分析和修复
- 批准号:
2305437 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SHF:Small: Machine Learning Approach for Fast Electromigration Analysis and Full-Chip Assessment
SHF:Small:用于快速电迁移分析和全芯片评估的机器学习方法
- 批准号:
2007135 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
IRES Track I: Development of Global Scientists and Engineers by Collaborative Research on Reliability-Aware IC Design
IRES Track I:通过可靠性意识 IC 设计合作研究促进全球科学家和工程师的发展
- 批准号:
1854276 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SHF:Small: EM-Aware Physical Design and Run-Time Optimization for sub-10nm 2D and 3D Integrated Circuits
SHF:Small:10nm 以下 2D 和 3D 集成电路的电磁感知物理设计和运行时优化
- 批准号:
1816361 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SHF: Small: Physics-Based Electromigration Assessment and Validation For Reliability-Aware Design and Management
SHF:小型:基于物理的电迁移评估和验证,用于可靠性设计和管理
- 批准号:
1527324 - 财政年份:2015
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Thermal-Sensitive System-Level Reliability Analysis and Management for Multi-Core and 3D Microprocessors
多核和 3D 微处理器的热敏系统级可靠性分析和管理
- 批准号:
1255899 - 财政年份:2013
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
US-Singapore Planning Visit: Collaborative Research on Design and Verification of 60Ghz RF/MM Integrated Circuits
美国-新加坡计划访问:60Ghz RF/MM 集成电路设计与验证合作研究
- 批准号:
1051797 - 财政年份:2011
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
IRES: Development of Global Scientists and Engineers by Collaborative Research on Variation-Aware Nanometer IC Design
IRES:通过变异感知纳米 IC 设计的合作研究来促进全球科学家和工程师的发展
- 批准号:
1130402 - 财政年份:2011
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SHF: Small: Variational and Bound Performance Analysis of Nanometer Mixed-Signal/Analog Circuits
SHF:小型:纳米混合信号/模拟电路的变分和束缚性能分析
- 批准号:
1116882 - 财政年份:2011
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SHF:Small:GPU-Based Many-Core Parallel Simulation of Interconnect and High-Frequency Circuits
SHF:Small:基于 GPU 的互连和高频电路多核并行仿真
- 批准号:
1017090 - 财政年份:2010
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
相似国自然基金
昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
- 批准号:32000033
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
- 批准号:31972324
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
- 批准号:81900988
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
- 批准号:31802058
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
- 批准号:31870821
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
- 批准号:31772128
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
- 批准号:81704176
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
- 批准号:91640114
- 批准年份:2016
- 资助金额:85.0 万元
- 项目类别:重大研究计划
相似海外基金
SHF: Small: Modular Automated Verification of Concurrent Data Structures
SHF:小型:并发数据结构的模块化自动验证
- 批准号:
2304758 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Scalable and Extensible I/O Runtime and Tools for Next Generation Adaptive Data Layouts
协作研究:SHF:小型:可扩展和可扩展的 I/O 运行时以及下一代自适应数据布局的工具
- 批准号:
2401274 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SHF: Small: Data Movement Complexity: Theory and Optimization
SHF:小型:数据移动复杂性:理论与优化
- 批准号:
2217395 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SHF: Small: CT-DDS -- Scalable Concolic Testing of Parallel Applications With Shared Dynamic Data Structures
SHF:小型:CT-DDS——具有共享动态数据结构的并行应用程序的可扩展 Concolic 测试
- 批准号:
2226448 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SHF: Small: Methods, Workflows, and Data Commons for Reducing Training Costs in Neural Architecture Search on High-Performance Computing Platforms
SHF:小型:降低高性能计算平台上神经架构搜索训练成本的方法、工作流程和数据共享
- 批准号:
2223704 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Scalable and Extensible I/O Runtime and Tools for Next Generation Adaptive Data Layouts
协作研究:SHF:小型:可扩展和可扩展的 I/O 运行时以及下一代自适应数据布局的工具
- 批准号:
2221811 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SHF: Small: Ubiquitous and Transparent Near-data Computing for General Purpose Processors
SHF:小型:通用处理器的无处不在且透明的近数据计算
- 批准号:
2200831 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SHF: Small: Towards High Performance Serverless Edge Computing for Data-intensive Applications
SHF:小型:面向数据密集型应用程序的高性能无服务器边缘计算
- 批准号:
2230620 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Data-Driven Lemma Synthesis for Interactive Proofs
协作研究:SHF:小型:交互式证明的数据驱动引理合成
- 批准号:
2220891 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Scalable and Extensible I/O Runtime and Tools for Next Generation Adaptive Data Layouts
协作研究:SHF:小型:可扩展和可扩展的 I/O 运行时以及下一代自适应数据布局的工具
- 批准号:
2221812 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant