Data-driven optimization for enhanced computational engineering design

用于增强计算工程设计的数据驱动优化

基本信息

  • 批准号:
    RGPIN-2018-05298
  • 负责人:
  • 金额:
    $ 4.66万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Data-driven science has been contributing to the advancement of several diverse disciplines ranging from biology to finance. In engineering, this has generated renewed interest in machine learning and artificial intelligence, especially in the context of cyber-physical systems that are developed to enable “industry 4.0,” intelligent transportation systems, or “smart” healthcare systems, just to name a few examples. The common theme is the acquisition and analysis of information in the form of data to better understand, model and predict the behaviour of these collaborative cyber-physical systems so that their design can be improved. This “digital twin” paradigm aims at continuously updating the computational models of their physical counterparts using real-time data to (re-)optimize their design, operation, maintenance, repair or replacement, etc.The availability of such rich contextual data can enhance the computational engineering design process significantly by means of optimization. At the same time, several challenges arise that hinder traditional optimization methods from being applied to this new paradigm, e.g.: To be effective, digital twins are likely to high dimensionality; moreover, they are typically blackboxes: gradient information is typically either not available or almost impossible to approximate reliably. Data sets can be quite large and/or sparse, and can include discontinuities and/or outliers. Moreover, they are appended continuously. The required adequacy of the predictive capability of the models can vary significantly in different areas of the input space spanned by design variables and parameters, especially in light of frequent data updates. The interactions among the connected systems have to be captured and coordinated to ensure that the collaborative network is seamlessly integrated and interoperable. This is especially challenging considering that there exist both physical and computational links among the cyber-physical systems.The objective of the proposed research program is to address the above challenges by developing a framework for data-driven computational engineering design optimization in the context of collaborative cyber-physical systems. To accomplish that, we will develop and integrate a data-driven environment for adaptive, adequacy-based multi-model management and validation with rigorous derivative-free optimization algorithms and coordination techniques for distributed systems. The proposed research program will train 5 PhD students, 3 Masters students, and 5 undergraduate students, preparing them for the next generation of engineering and production systems.
数据驱动的科学一直在为从生物学到金融学等多个不同学科的发展做出贡献。在工程领域,这引起了人们对机器学习和人工智能的新兴趣,特别是在为实现“工业4.0”、智能交通系统或“智能”医疗保健系统而开发的网络物理系统的背景下。共同的主题是获取和分析数据形式的信息,以更好地理解、建模和预测这些协作性网络物理系统的行为,从而改进其设计。这种“数字孪生”模式旨在使用实时数据不断更新其物理对应物的计算模型,以(重新)优化其设计、操作、维护、维修或更换等。这种丰富的上下文数据的可用性可以通过优化显著增强计算工程设计过程。与此同时,出现了一些挑战,这些挑战阻碍了传统的优化方法应用于这种新的范例,例如: 为了有效,数字孪生可能是高维的;此外,它们通常是黑盒:梯度信息通常不可用或几乎不可能可靠地近似。数据集可以是相当大和/或稀疏的,并且可以包括不连续性和/或离群值。此外,它们还在不断地追加。 在设计变量和参数所涵盖的输入空间的不同区域,所需的模型预测能力的充分性可能会有很大差异,特别是在数据更新频繁的情况下。 必须捕获和协调连接系统之间的交互,以确保协作网络无缝集成和互操作。这是特别具有挑战性的,考虑到存在的物理和计算的网络物理systems.The拟议的研究计划的目标之间的联系是通过开发一个框架,数据驱动的计算工程设计优化协同网络物理系统的背景下,以解决上述挑战。为了实现这一目标,我们将开发和集成一个数据驱动的环境,用于自适应,基于充分性的多模型管理和验证,以及严格的无导数优化算法和分布式系统的协调技术。拟议的研究计划将培养5名博士生,3名硕士生和5名本科生,为下一代工程和生产系统做好准备。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kokkolaras, Michael其他文献

Optimization of Infectious Disease Prevention and Control Policies Using Artificial Life
Design Optimization of Tumor Vasculature-Bound Nanoparticles
  • DOI:
    10.1038/s41598-018-35675-y
  • 发表时间:
    2018-12-11
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Chamseddine, Ibrahim M.;Frieboes, Hermann B.;Kokkolaras, Michael
  • 通讯作者:
    Kokkolaras, Michael
Scalable Set-Based Design Optimization and Remanufacturing for Meeting Changing Requirements
  • DOI:
    10.1115/1.4047908
  • 发表时间:
    2021-02-01
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Al Handawi, Khalil;Andersson, Petter;Kokkolaras, Michael
  • 通讯作者:
    Kokkolaras, Michael

Kokkolaras, Michael的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kokkolaras, Michael', 18)}}的其他基金

Digital multidisciplinary analysis and design optimization platform for aeroderivative gas turbines
航改燃气轮机数字化多学科分析与设计优化平台
  • 批准号:
    513922-2017
  • 财政年份:
    2021
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Collaborative Research and Development Grants
Data-driven optimization for enhanced computational engineering design
用于增强计算工程设计的数据驱动优化
  • 批准号:
    RGPIN-2018-05298
  • 财政年份:
    2021
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Discovery Grants Program - Individual
Digital multidisciplinary analysis and design optimization platform for aeroderivative gas turbines
航改燃气轮机数字化多学科分析与设计优化平台
  • 批准号:
    513922-2017
  • 财政年份:
    2020
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Collaborative Research and Development Grants
Data-driven optimization for enhanced computational engineering design
用于增强计算工程设计的数据驱动优化
  • 批准号:
    RGPIN-2018-05298
  • 财政年份:
    2020
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Discovery Grants Program - Individual
Digital multidisciplinary analysis and design optimization platform for aeroderivative gas turbines
航改燃气轮机数字化多学科分析与设计优化平台
  • 批准号:
    513922-2017
  • 财政年份:
    2019
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Collaborative Research and Development Grants
Data-driven optimization for enhanced computational engineering design
用于增强计算工程设计的数据驱动优化
  • 批准号:
    RGPIN-2018-05298
  • 财政年份:
    2019
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Discovery Grants Program - Individual
Data-driven optimization for enhanced computational engineering design
用于增强计算工程设计的数据驱动优化
  • 批准号:
    RGPIN-2018-05298
  • 财政年份:
    2018
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Discovery Grants Program - Individual
Digital multidisciplinary analysis and design optimization platform for aeroderivative gas turbines
航改燃气轮机数字化多学科分析与设计优化平台
  • 批准号:
    513922-2017
  • 财政年份:
    2018
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Collaborative Research and Development Grants
Digital multidisciplinary analysis and design optimization platform for aeroderivative gas turbines
航改燃气轮机数字化多学科分析与设计优化平台
  • 批准号:
    513922-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Collaborative Research and Development Grants
Coordination-based optimization framework for engineering systems design considering both individual and cooperative performance objectives
考虑个体和协作性能目标的基于协调的工程系统设计优化框架
  • 批准号:
    436193-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目
基于Cache的远程计时攻击研究
  • 批准号:
    60772082
  • 批准年份:
    2007
  • 资助金额:
    28.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: MoDL: Graph-Optimized Cellular Connectionism via Artificial Neural Networks for Data-Driven Modeling and Optimization of Complex Systems
合作研究:MoDL:通过人工神经网络进行图优化的细胞连接,用于复杂系统的数据驱动建模和优化
  • 批准号:
    2234032
  • 财政年份:
    2023
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Standard Grant
Data-Driven Shape Optimization Problem toward Shock Wave Boundary Layer Interaction
冲击波边界层相互作用的数据驱动形状优化问题
  • 批准号:
    23K03659
  • 财政年份:
    2023
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: SWIFT: Data Driven Learning and Optimization in Reconfigurable Intelligent Surface Enabled Industrial Wireless Network for Advanced Manufacturing
合作研究:SWIFT:先进制造可重构智能表面工业无线网络中的数据驱动学习和优化
  • 批准号:
    2414946
  • 财政年份:
    2023
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Standard Grant
Collaborative Research: MoDL: Graph-Optimized Cellular Connectionism via Artificial Neural Networks for Data-Driven Modeling and Optimization of Complex Systems
合作研究:MoDL:通过人工神经网络进行图优化的细胞连接,用于复杂系统的数据驱动建模和优化
  • 批准号:
    2234031
  • 财政年份:
    2023
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Standard Grant
Data-Driven Scheduling of Orthopaedic Surgical Services: An End-to-End Framework with Machine Learning and Mathematical Optimization
数据驱动的骨科手术服务调度:具有机器学习和数学优化的端到端框架
  • 批准号:
    490488
  • 财政年份:
    2023
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Operating Grants
CAREER: Data-driven dynamic adaptive optimization for next generation power system operation
职业:数据驱动的下一代电力系统运行的动态自适应优化
  • 批准号:
    2316675
  • 财政年份:
    2023
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Standard Grant
Integrating waste and resource management: Data-driven optimization of urban mining logistics
整合废物和资源管理:数据驱动的城市矿业物流优化
  • 批准号:
    RGPIN-2019-07172
  • 财政年份:
    2022
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Discovery Grants Program - Individual
I-Corps: Data-Driven Robust Optimization Technology for Battery Storage System Management
I-Corps:数据驱动的电池存储系统管理鲁棒优化技术
  • 批准号:
    2222450
  • 财政年份:
    2022
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Standard Grant
Data-driven optimization for DBS programming in temporal lobe epilepsy
颞叶癫痫 DBS 编程的数据驱动优化
  • 批准号:
    10574839
  • 财政年份:
    2022
  • 资助金额:
    $ 4.66万
  • 项目类别:
Smart Supply Chain Management via Data Driven Optimization
通过数据驱动优化实现智能供应链管理
  • 批准号:
    RGPIN-2019-07115
  • 财政年份:
    2022
  • 资助金额:
    $ 4.66万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了