Multimodal integration of functional neuroimaging data
功能神经影像数据的多模态整合
基本信息
- 批准号:RGPIN-2018-06707
- 负责人:
- 金额:$ 2.4万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Based on different physical and physiological principles, several non-invasive neuroimaging techniques are now available to study the brain in function. However, the ideal technique that would explore brain neuronal activity at a millimeter scale and at a millisecond scale does not exist. Therefore, it is necessary to integrate multimodal data, to overcome the intrinsic limitations of each individual modality and to potentiate their combined use.We propose to use multimodal integration to elucidate the fundamental bases of two important processes driving brain activity:(i) Neurovascular coupling (NVC) describes the relationship between neuronal bioelectric activity and hemodynamic response of the brain bringing the required nutrients (oxygen, glucose) to the active region. Most popular functional imaging techniques are monitoring only these indirect hemodynamic responses, occurring several seconds after the neuronal discharge.(ii) Functional connectivity patterns measure slow fluctuations of hemodynamic signals (<0.05Hz) to characterize the underlying resting-state networks (RSNs) structure of brain activity. These patterns are organized in space and highly reproducible from subject to subject. Functional connectivity offers a unique perspective to identify RSNs-based biomarkers from only few minutes of resting state functional Magnetic Resonance Imaging (fMRI) data.Objective 1: Taking advantage from direct measurements of neuronal activity in multimodal studies. Having significantly contributed to the domain of Electro-/Magneto-EncephaloGraphy (EEG/MEG) source localization, we propose to optimize and carefully validate EEG/MEG source localization during resting state, to disentangle the neuronal origins of RSNs ongoing hemodynamic fluctuations.Objective 2: Establishing new sensitive and specific biomarkers from multimodal resting state data. Using a new method we developed to estimate connector hubs from resting state fMRI data (Lee et al Neuroimage 2016), we will assess if connector hubs exhibit specific dynamic (EEG/MEG source imaging) and metabolism (oxygenation and glucose baseline metabolism) signatures, providing a unique framework to characterize the driving role of connector hubs in RSN fluctuations.Objective 3: Developing personalized/portable imaging modalities to study brain activity in everyday life. Exploiting absorption properties of infrared light within brain tissues, we developed personalized EEG/Near InfraRed Spectroscopy (NIRS) investigations to monitor cortical fluctuations of oxy- and deoxy-hemoglobin. We propose to develop personalized EEG/NIRS during the whole night, to map for the first time, hemodynamic fluctuations during normal sleep, sleep disorders and interactions between sleep and epileptic activity.All proposed methods will be evaluated on healthy controls and patients with focal epilepsy.
基于不同的物理和生理原理,现在有几种非侵入性的神经成像技术可用于研究大脑的功能。然而,在毫米级和毫秒级探索大脑神经元活动的理想技术并不存在。因此,有必要整合多模态数据,以克服每个单独的modernize.We建议使用多模态集成,以阐明两个重要的过程驱动大脑活动的基本基础:(一)神经血管耦合(NVC)描述了神经元生物电活动和脑血流动力学反应之间的关系,使所需的营养物质(氧气,葡萄糖)的活动区域。大多数流行的功能成像技术只监测这些间接的血流动力学反应,发生在神经元放电后几秒钟。(ii)功能连接模式测量血流动力学信号的缓慢波动(<0.05Hz),以表征大脑活动的潜在静息态网络(RSN)结构。这些模式在空间上有组织,并且从一个主题到另一个主题具有高度可复制性。功能连接提供了一个独特的视角来识别RSN为基础的生物标志物,从只有几分钟的静息状态功能磁共振成像(fMRI)data.Objective 1:利用直接测量的神经元活动的多模态研究。在对脑电/脑磁图(EEG/MEG)源定位领域做出重大贡献后,我们提出优化和仔细验证静息状态下EEG/MEG源定位,以解开RSN持续血流动力学波动的神经元起源。目的2:从多模态静息状态数据中建立新的敏感和特异性生物标志物。使用我们开发的一种新方法,从静息状态fMRI数据中估计连接器集线器(Lee等人Neuroimage 2016),我们将评估连接器座是否表现出特定的动态(EEG/MEG源成像)和代谢(氧合和葡萄糖基线代谢)特征,提供了一个独特的框架来表征连接器集线器在RSN波动中的驱动作用。开发个性化/便携式成像模式,以研究日常生活中的大脑活动。利用脑组织内红外光的吸收特性,我们开发了个性化的EEG/近红外光谱(NIRS)研究,以监测氧合和脱氧血红蛋白的皮质波动。 我们建议开发个性化的脑电图/近红外光谱在整个晚上,地图的第一次,血流动力学波动在正常睡眠,睡眠障碍和睡眠和癫痫活动之间的相互作用,所有提出的方法将评估健康对照组和局灶性癫痫患者。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Grova, Christophe其他文献
Clinical Yield of Electromagnetic Source Imaging and Hemodynamic Responses in Epilepsy Validation With Intracerebral Data
- DOI:
10.1212/wnl.0000000000200337 - 发表时间:
2022-06-14 - 期刊:
- 影响因子:9.9
- 作者:
Abdallah, Chifaou;Hedrich, Tanguy;Grova, Christophe - 通讯作者:
Grova, Christophe
Validating MEG source imaging of resting state oscillatory patterns with an intracranial EEG atlas
- DOI:
10.1016/j.neuroimage.2023.120158 - 发表时间:
2023-05-10 - 期刊:
- 影响因子:5.7
- 作者:
Afnan, Jawata;von Ellenrieder, Nicolas;Grova, Christophe - 通讯作者:
Grova, Christophe
Optimal optode montage on electroencephalography/functional near-infrared spectroscopy caps dedicated to study epileptic discharges
- DOI:
10.1117/1.jbo.19.2.026010 - 发表时间:
2014-02-01 - 期刊:
- 影响因子:3.5
- 作者:
Machado, Alexis;Marcotte, Odile;Grova, Christophe - 通讯作者:
Grova, Christophe
Symmetrical event-related EEG/fMRI information fusion in a variational Bayesian framework
- DOI:
10.1016/j.neuroimage.2007.01.044 - 发表时间:
2007-05-15 - 期刊:
- 影响因子:5.7
- 作者:
Daunizeau, Jean;Grova, Christophe;Benali, Habib - 通讯作者:
Benali, Habib
Using voxel-specific hemodynamic response function in EEG-fMRI data analysis: An estimation and detection model
- DOI:
10.1016/j.neuroimage.2006.08.023 - 发表时间:
2007-01-01 - 期刊:
- 影响因子:5.7
- 作者:
Lu, Yingli;Grova, Christophe;Gotman, Jean - 通讯作者:
Gotman, Jean
Grova, Christophe的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Grova, Christophe', 18)}}的其他基金
Multimodal integration of functional neuroimaging data
功能神经影像数据的多模态整合
- 批准号:
RGPIN-2018-06707 - 财政年份:2021
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Multimodal integration of functional neuroimaging data
功能神经影像数据的多模态整合
- 批准号:
RGPIN-2018-06707 - 财政年份:2020
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Multimodal integration of functional neuroimaging data
功能神经影像数据的多模态整合
- 批准号:
RGPIN-2018-06707 - 财政年份:2019
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Multimodal integration of functional neuroimaging data
功能神经影像数据的多模态整合
- 批准号:
RGPIN-2018-06707 - 财政年份:2018
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Multimodal integration of functional neuroimaging data
功能神经影像数据的多模态整合
- 批准号:
356610-2013 - 财政年份:2017
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Multimodal integration of functional neuroimaging data
功能神经影像数据的多模态整合
- 批准号:
356610-2013 - 财政年份:2016
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Multimodal integration of functional neuroimaging data
功能神经影像数据的多模态整合
- 批准号:
356610-2013 - 财政年份:2015
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Multimodal integration of functional neuroimaging data
功能神经影像数据的多模态整合
- 批准号:
446159-2013 - 财政年份:2015
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Multimodal integration of functional neuroimaging data
功能神经影像数据的多模态整合
- 批准号:
446159-2013 - 财政年份:2014
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Multimodal integration of functional neuroimaging data
功能神经影像数据的多模态整合
- 批准号:
356610-2013 - 财政年份:2014
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Fast-Track Multimodal monitoring for neonatal neurocritical care
新生儿神经重症监护的快速多模式监测
- 批准号:
10601201 - 财政年份:2023
- 资助金额:
$ 2.4万 - 项目类别:
Intracranial multimodal physiological monitoring in acute brain injury
急性脑损伤的颅内多模态生理监测
- 批准号:
10675428 - 财政年份:2022
- 资助金额:
$ 2.4万 - 项目类别:
Intracranial multimodal physiological monitoring in acute brain injury
急性脑损伤的颅内多模态生理监测
- 批准号:
10291003 - 财政年份:2022
- 资助金额:
$ 2.4万 - 项目类别:
Bridging the Gap from Hemodynamic Stress to Intracranial Aneurysm Instability: An Integrated Multimodal Approach
弥合血流动力学应激与颅内动脉瘤不稳定之间的差距:综合多模式方法
- 批准号:
10610461 - 财政年份:2021
- 资助金额:
$ 2.4万 - 项目类别:
Bridging the Gap from Hemodynamic Stress to Intracranial Aneurysm Instability: An Integrated Multimodal Approach
弥合血流动力学应激与颅内动脉瘤不稳定之间的差距:综合多模式方法
- 批准号:
10437826 - 财政年份:2021
- 资助金额:
$ 2.4万 - 项目类别:
Harnessing multimodal data to enhance machine learning of children’s vocalizations
利用多模态数据增强儿童发声的机器学习
- 批准号:
10411575 - 财政年份:2021
- 资助金额:
$ 2.4万 - 项目类别:
Multimodal integration of functional neuroimaging data
功能神经影像数据的多模态整合
- 批准号:
RGPIN-2018-06707 - 财政年份:2021
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual
Bridging the Gap from Hemodynamic Stress to Intracranial Aneurysm Instability: An Integrated Multimodal Approach
弥合血流动力学应激与颅内动脉瘤不稳定之间的差距:综合多模式方法
- 批准号:
10186321 - 财政年份:2021
- 资助金额:
$ 2.4万 - 项目类别:
The NKI Rockland Sample II: An Open Resource of Multimodal Brain, Physiology & Behavior Data from a Community Lifespan Sample
NKI Rockland 样本 II:多模式大脑、生理学的开放资源
- 批准号:
10623202 - 财政年份:2021
- 资助金额:
$ 2.4万 - 项目类别:
Multimodal integration of functional neuroimaging data
功能神经影像数据的多模态整合
- 批准号:
RGPIN-2018-06707 - 财政年份:2020
- 资助金额:
$ 2.4万 - 项目类别:
Discovery Grants Program - Individual