Quantum-Inspired Causal Inference

量子启发的因果推理

基本信息

  • 批准号:
    RGPIN-2022-03714
  • 负责人:
  • 金额:
    $ 2.11万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

True, correlation alone does not imply causation. But, one can extract causal conclusions from statistical data with careful assumptions. Causal inference (CI) is the nascent data science framework for doing just that. Consider: How can we determine the impact of an advertising campaign on the sales of a new product, given unmeasurable factors such as innate desirability? If we see correlation between diet and health, could that diet merely be preferred by healthier groups? How can we disentangle the impact of higher education on future wealth from factors such as aptitude or opportunity, which can also explain both educational and economic achievement? What can we learn about the roles of genes from associations between genotypes and phenotypes? These questions are unified by the theme of quantifying the cause-effect relationships between variables which are also related by hidden common causes. This is a central task in CI, and formally reduces to a low-level math problem concerning characterizing the limitations of different causal models involving hidden variables. The same low-level problem turns up in the study of the quantum physics, albeit from unrelated motivations. Physicists care about certifying the "quantumness" of their data, i.e., the failure of classical explanations in terms of (local) hidden variables. In retrospect, theoretical physicists have been doing causal inference since 1964, though the formalism of modern CI didn't emerge until some twenty years later. Significantly, the intersection of these superficially unrelated disciplines was only recognized in the last decade, by researchers at Canada's own Perimeter Institute. My research program continues Canada's first-mover advantage in the intersecting frontiers of causal inference and quantum foundations (QF). Progress in this space promises to benefit Canada's strategic priorities by improving the reliability of commercial data analysis and artificial intelligence, and in aiding the discovery of novel quantum technologies. The interdisciplinary intersection provides unique opportunities for PhD research which is both tractable and impactful. Typically, near-term research targets are either incremental or high risk. Here, however, a PhD student can practically guarantee the impact of their research. The translation of major results for QF to CI is one such avenue, as is the consideration of entirely novel questions in quantum causal inference inspired by seminal questions in the development of classical CI. Aside from being interdisciplinary, this proposal includes both basic and translational research components. Students will therefore establish a track record conducive to career paths in both industry and academia. The analytical and computational skills involved in these projects are especially portable. Students will grow into mature scientists by gaining confidence in their own problem-solving abilities and through extensive professional collaboration.
诚然,仅有相关性并不意味着因果关系。但是,人们可以通过仔细的假设从统计数据中提取因果结论。因果推理(CI)正是实现这一目标的新兴数据科学框架。想一想:我们如何确定广告活动对新产品销售的影响,考虑到不可衡量的因素,如天生的可取性?如果我们看到饮食和健康之间的相关性,那么这种饮食只会被更健康的群体所偏爱吗?我们如何才能将高等教育对未来财富的影响从能力或机会等因素中分离出来,这些因素也可以解释教育和经济成就?我们可以从基因类型和表型之间的关联中了解到基因的作用是什么?这些问题被量化变量之间的因果关系的主题统一起来,这些变量也由隐藏的共同原因联系在一起。这是CI中的一个中心任务,形式上归结为一个关于表征涉及隐藏变量的不同因果模型的限制的低级数学问题。同样的低层次问题也出现在量子物理学的研究中,尽管是出于无关的动机。物理学家关心的是证明他们的数据的“量化”,即经典解释在(局部)隐藏变量方面的失败。回想起来,理论物理学家自1964年以来一直在做因果推理,尽管现代CI的形式主义直到大约20年后才出现。值得注意的是,这些表面上不相关的学科的交叉直到最近十年才被加拿大周界研究所的研究人员认识到。我的研究计划延续了加拿大在因果推理和量子基础(QF)交叉前沿的先发优势。这一领域的进展有望通过提高商业数据分析和人工智能的可靠性,以及在帮助发现新的量子技术方面,使加拿大的战略重点受益。跨学科的交叉为博士研究提供了独特的机会,既容易处理,又有影响。通常,近期研究目标要么是渐进式的,要么是高风险的。然而,在这里,博士生几乎可以保证他们的研究产生的影响。QF的主要结果到CI的转换就是这样一种途径,正如在经典CI的发展中受到种子问题的启发,在量子因果推理中考虑全新的问题一样。除了跨学科外,这项建议还包括基础研究和翻译研究两个部分。因此,学生将建立一个有利于在行业和学术界的职业道路的记录。这些项目中涉及的分析和计算技能特别容易移植。学生将通过对自己解决问题的能力和广泛的专业合作获得信心,成长为成熟的科学家。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wolfe, Elie其他文献

Experimental nonclassicality in a causal network without assuming freedom of choice.
  • DOI:
    10.1038/s41467-023-36428-w
  • 发表时间:
    2023-02-17
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Polino, Emanuele;Poderini, Davide;Rodari, Giovanni;Agresti, Iris;Suprano, Alessia;Carvacho, Gonzalo;Wolfe, Elie;Canabarro, Askery;Moreno, George;Milani, Giorgio;Spekkens, Robert W.;Chaves, Rafael;Sciarrino, Fabio
  • 通讯作者:
    Sciarrino, Fabio
Experimental Demonstration that No Tripartite-Nonlocal Causal Theory Explains Nature's Correlations
  • DOI:
    10.1103/physrevlett.129.150402
  • 发表时间:
    2022-10-04
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Cao, Huan;Renou, Marc-Olivier;Wolfe, Elie
  • 通讯作者:
    Wolfe, Elie
Genuine Network Multipartite Entanglement
  • DOI:
    10.1103/physrevlett.125.240505
  • 发表时间:
    2020-12-09
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Navascues, Miguel;Wolfe, Elie;Pozas-Kerstjens, Alejandro
  • 通讯作者:
    Pozas-Kerstjens, Alejandro
Causal compatibility inequalities admitting quantum violations in the triangle structure
  • DOI:
    10.1103/physreva.98.022113
  • 发表时间:
    2018-08-08
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Fraser, Thomas C.;Wolfe, Elie
  • 通讯作者:
    Wolfe, Elie

Wolfe, Elie的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wolfe, Elie', 18)}}的其他基金

Quantum-Inspired Causal Inference
量子启发的因果推理
  • 批准号:
    DGECR-2022-00120
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Launch Supplement

相似海外基金

CAREER: Origami-inspired design for a tissue engineered heart valve
职业:受折纸启发的组织工程心脏瓣膜设计
  • 批准号:
    2337540
  • 财政年份:
    2024
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Continuing Grant
Convergence Accelerator Track M: Bio-Inspired Design of Robot Hands for Use-Driven Dexterity
融合加速器轨道 M:机器人手的仿生设计,实现使用驱动的灵活性
  • 批准号:
    2344109
  • 财政年份:
    2024
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Standard Grant
BAMBOO - Build scAled Modular Bamboo-inspired Offshore sOlar systems
BAMBOO - 构建规模化模块化竹子式海上太阳能系统
  • 批准号:
    10109981
  • 财政年份:
    2024
  • 资助金额:
    $ 2.11万
  • 项目类别:
    EU-Funded
CAREER: Scalable Physics-Inspired Ising Computing for Combinatorial Optimizations
职业:用于组合优化的可扩展物理启发伊辛计算
  • 批准号:
    2340453
  • 财政年份:
    2024
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Continuing Grant
CAREER: SHF: Bio-Inspired Microsystems for Energy-Efficient Real-Time Sensing, Decision, and Adaptation
职业:SHF:用于节能实时传感、决策和适应的仿生微系统
  • 批准号:
    2340799
  • 财政年份:
    2024
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Continuing Grant
NSF-NSERC: Fairness Fundamentals: Geometry-inspired Algorithms and Long-term Implications
NSF-NSERC:公平基础:几何启发的算法和长期影响
  • 批准号:
    2342253
  • 财政年份:
    2024
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Standard Grant
NSF Convergence Accelerator Track L: Intelligent Nature-inspired Olfactory Sensors Engineered to Sniff (iNOSES)
NSF 融合加速器轨道 L:受自然启发的智能嗅觉传感器,专为嗅探而设计 (iNOSES)
  • 批准号:
    2344256
  • 财政年份:
    2024
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Standard Grant
Development of Integrated Quantum Inspired Algorithms for Shapley Value based Fast and Interpretable Feature Subset Selection
基于 Shapley 值的快速且可解释的特征子集选择的集成量子启发算法的开发
  • 批准号:
    24K15089
  • 财政年份:
    2024
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Bio-inspired Nanoparticles for Mechano-Regulation of Stem Cell Fate
用于干细胞命运机械调节的仿生纳米颗粒
  • 批准号:
    DP240102315
  • 财政年份:
    2024
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Projects
Gecko Inspired Autonomous Fabrication Of Programmable Two-dimensional Quantum Materials
壁虎启发可编程二维量子材料的自主制造
  • 批准号:
    EP/Y026284/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了