Biased sampling algorithms for scientific and engineering applications
用于科学和工程应用的偏置采样算法
基本信息
- 批准号:RGPIN-2020-03907
- 负责人:
- 金额:$ 1.75万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This proposal seeks to extend our recent progress in enhancing the applicability, numerical accuracy and computational efficiency of biased sampling methods. These techniques efficiently determine the likelihood that macroscopic variables, such as the energy or error rate, of a system comprised of many subsystems with randomly fluctuating states adopt rarely occurring but physically significant values. This is achieved numerically by discarding a certain fraction of simulated fluctuations that displace the system away from the low probability region of interest. When the calculation is complete, the actual macroscopic state probabilities are extracted from the biased result. To classify the properties of rare events and further estimate if a given configuration of input variables will produce an unusual system response, we will integrate biased sampling with appropriate machine learning and related methods. While the resulting algorithms will be benchmarked against idealized models of magnetic spin systems, we will simultaneously insure that our research continues to be directly relevant to applied physics and engineering by examining the statistics and behavior of extreme events in fluids, nonlinearity compensation in multichannel coherent optical systems and networks. Explicitly, in solid-state physics we have previously developed a method for investigating critical behavior in the Ising model that combined the Wolff cluster reversal algorithm with a transition matrix reformulation of biased sampling. In future work, we will however replace the Ising-specific Wolff algorithm by an analogous but more general construct containing a significantly smaller number of component variables than the system of interest. This will enable the prediction and classification of phase transitions and extreme statistics over a wide range of complex linear and nonlinear systems and networks. In fluid mechanics, we will apply machine-learning techniques in combination with biased sampling to estimate e.g. the drag coefficient of a perturbed structure without solving the underlying equations of motion. Finally, we will optimize methods for compensating nonlinear effects in multi-wavelength optical communication systems by preprocessing the transmitted or post processing the detected signals according to a prescription determined by a combined biased sampling / machine-learning algorithm. Here we will as well devise novel physical and computational refinements that incorporate qualitative physical models of the nonlinearities.
这项建议旨在扩大我们在提高有偏抽样方法的适用性、数值精度和计算效率方面的最新进展。这些技术有效地确定了由具有随机波动状态的许多子系统组成的系统的宏观变量(例如能量或错误率)采用很少出现但物理上有意义的值的可能性。这在数值上是通过丢弃一定比例的模拟波动来实现的,这些波动会使系统远离感兴趣的低概率区域。当计算完成时,从有偏差的结果中提取实际的宏观状态概率。为了对罕见事件的性质进行分类,并进一步估计给定的输入变量配置是否会产生不寻常的系统响应,我们将把有偏抽样与适当的机器学习和相关方法相结合。虽然由此产生的算法将以磁自旋系统的理想化模型为基准,但我们将同时通过检查流体中极端事件的统计和行为、多通道相干光学系统和网络中的非线性补偿来确保我们的研究继续与应用物理和工程直接相关。显然,在固态物理学中,我们之前已经开发了一种方法来研究伊辛模型中的临界行为,该方法将Wolff簇反转算法与有偏抽样的转移矩阵重新公式相结合。然而,在未来的工作中,我们将用一种类似但更通用的结构来取代Ising特定的Wolff算法,该结构包含的组件变量数量比感兴趣的系统要少得多。这将使相变和极端统计在广泛的复杂线性和非线性系统和网络上的预测和分类成为可能。在流体力学中,我们将应用机器学习技术与有偏采样相结合来估计例如扰动结构的阻力系数,而不需要求解基本的运动方程。最后,我们将根据组合有偏采样/机器学习算法确定的处方,通过对发射信号进行预处理或对检测信号进行后处理,来优化多波长光通信系统中补偿非线性效应的方法。在这里,我们还将设计新的物理和计算改进,其中包括非线性的定性物理模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yevick, David其他文献
Generation of three wide frequency bands within a single white-light cavity
- DOI:
10.1103/physreva.97.043816 - 发表时间:
2018-04-09 - 期刊:
- 影响因子:2.9
- 作者:
Othman, Anas;Yevick, David;Al-Amri, M. - 通讯作者:
Al-Amri, M.
Enhanced negative refractive index control in a 5-level system
- DOI:
10.1080/09500340.2016.1271914 - 发表时间:
2017-01-01 - 期刊:
- 影响因子:1.3
- 作者:
Othman, Anas;Yevick, David - 通讯作者:
Yevick, David
Yevick, David的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yevick, David', 18)}}的其他基金
Biased sampling algorithms for scientific and engineering applications
用于科学和工程应用的偏置采样算法
- 批准号:
RGPIN-2020-03907 - 财政年份:2021
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Biased sampling algorithms for scientific and engineering applications
用于科学和工程应用的偏置采样算法
- 批准号:
RGPIN-2020-03907 - 财政年份:2020
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Techniques for Error Analysis and Measurement in Optical and Wireless Communication Systems
光和无线通信系统中的误差分析和测量技术
- 批准号:
46428-2012 - 财政年份:2015
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Techniques for Error Analysis and Measurement in Optical and Wireless Communication Systems
光和无线通信系统中的误差分析和测量技术
- 批准号:
46428-2012 - 财政年份:2014
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Techniques for Error Analysis and Measurement in Optical and Wireless Communication Systems
光和无线通信系统中的误差分析和测量技术
- 批准号:
46428-2012 - 财政年份:2013
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Techniques for Error Analysis and Measurement in Optical and Wireless Communication Systems
光和无线通信系统中的误差分析和测量技术
- 批准号:
46428-2012 - 财政年份:2012
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Polarization effects in high-speed optical fiber systems
高速光纤系统中的偏振效应
- 批准号:
46428-2005 - 财政年份:2009
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Polarization mode delay and polarization dependent loss compensation in optical fiber systems
光纤系统中的偏振模式延迟和偏振相关损耗补偿
- 批准号:
332201-2005 - 财政年份:2007
- 资助金额:
$ 1.75万 - 项目类别:
Collaborative Research and Development Grants
Polarization effects in high-speed optical fiber systems
高速光纤系统中的偏振效应
- 批准号:
46428-2005 - 财政年份:2006
- 资助金额:
$ 1.75万 - 项目类别:
Discovery Grants Program - Individual
Polarization mode delay and polarization dependent loss compensation in optical fiber systems
光纤系统中的偏振模式延迟和偏振相关损耗补偿
- 批准号:
332201-2005 - 财政年份:2006
- 资助金额:
$ 1.75万 - 项目类别:
Collaborative Research and Development Grants
相似国自然基金
基于全局权重的绩效评价、改进方法与应用研究
- 批准号:71671172
- 批准年份:2016
- 资助金额:49.3 万元
- 项目类别:面上项目
含掩埋物体的无穷曲面反散射问题的理论与数值方法研究
- 批准号:11601042
- 批准年份:2016
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
体数据表达与绘制的新方法研究
- 批准号:61170206
- 批准年份:2011
- 资助金额:55.0 万元
- 项目类别:面上项目
通用声场空间信息捡拾与重放方法的研究
- 批准号:11174087
- 批准年份:2011
- 资助金额:70.0 万元
- 项目类别:面上项目
MIMO电磁探测技术与成像方法研究
- 批准号:40774055
- 批准年份:2007
- 资助金额:35.0 万元
- 项目类别:面上项目
相似海外基金
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Customizable Artificial Intelligence for the Biomedical Masses: Development of a User-Friendly Automated Machine Learning Platform for Biology Image Analysis.
面向生物医学大众的可定制人工智能:开发用于生物图像分析的用户友好的自动化机器学习平台。
- 批准号:
10699828 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
A multicenter study in bronchoscopy combining Stimulated Raman Histology with Artificial intelligence for rapid lung cancer detection - The ON-SITE study
支气管镜检查结合受激拉曼组织学与人工智能快速检测肺癌的多中心研究 - ON-SITE 研究
- 批准号:
10698382 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Mixed methods examination of warning signs within 24 hours of suicide attempt in hospitalized adults
住院成人自杀未遂 24 小时内警告信号的混合方法检查
- 批准号:
10710712 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Deep-UV Microscopy for Real-Time Adequacy Analysis of Bone Marrow Aspirates
用于骨髓抽吸物实时充分性分析的深紫外显微镜
- 批准号:
10761397 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Automated Assessment of Maternal Sensitivity to Infant Distress: Leveraging Wearable Sensors for Substance Use Disorder Prevention and Research
自动评估母亲对婴儿痛苦的敏感性:利用可穿戴传感器进行药物滥用障碍预防和研究
- 批准号:
10777818 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Enhanced Biochemical Monitoring for Aortic Aneurysm Disease
加强主动脉瘤疾病的生化监测
- 批准号:
10716621 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Towards equitable early identification of autism spectrum disorders in females
实现女性自闭症谱系障碍的公平早期识别
- 批准号:
10722011 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
A computational model for prediction of morphology, patterning, and strength in bone regeneration
用于预测骨再生形态、图案和强度的计算模型
- 批准号:
10727940 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:
Unified, Scalable, and Reproducible Neurostatistical Software
统一、可扩展且可重复的神经统计软件
- 批准号:
10725500 - 财政年份:2023
- 资助金额:
$ 1.75万 - 项目类别:














{{item.name}}会员




