Algebraic methods for lattice models of statistical physics

统计物理晶格模型的代数方法

基本信息

  • 批准号:
    RGPIN-2019-05450
  • 负责人:
  • 金额:
    $ 1.53万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

Physics understands matter through its atomic or molecular structure. This description has been overwhelmingly successful to predict physical properties and discover new materials. It is particularly well-suited to systems with a finite, though not too large, number of atoms and molecules. Phenomena occurring only when a large number of atoms or molecules interact call for other techniques. Phase transition is one such phenomenon: it is known that no phase transitions may occur unless the number of interacting objects tends to infinity. The proposed project aims at understanding the passage from finite systems (say, those with a finite number of atoms) to their continuum limit (the theories that assume from the start an infinite number of interacting objects). In particular it wants to identify the properties of finite systems that reveal those of the infinite ones obtained by increasing the number of objects. The main mathematical tool of the project will be algebra. Several chapters of mathematics have played a role in the description of phase transitions. Analysis and algebra are probably the central ones. Algebra provides the tools to identify the symmetries of physical systems. Symmetries are operations that transforms a system into another one without changing its overall physical properties. These symmetries offer fundamental ways to approach physical systems and define them mathematically. The proposed project puts an emphasis on studying the algebraic structures arising in both the finite lattice models and their infinite continuum limits. The research will focus on two-dimensional lattice models of microscopic interactions. These models are known as percolation, the Ising model, the XXZ spin chain, dense and dilute loop models, etc. They offer a natural laboratory to probe physical properties and prove them rigorously. They have a finite number of "particles", they can be probed on the computer and they are believed to go to (logarithmic) conformal field theories (a distinguished set of well-studied continuum models). Most importantly they rest upon an algebraic description that lends itself naturally to the study of the limit to large number of particles. Previous works in these directions, others' and mine, have contributed to both physics and mathematics. For example it is useful in physics to recognize emerging properties of a finite system, even though there are only partially realized. In mathematics, the study of algebraic structures of physical systems has suggested many new avenues of development or new ways of looking at existing results.
物理学通过原子或分子结构来理解物质。这种描述在预测物理性质和发现新材料方面取得了压倒性的成功。它特别适用于原子和分子数量有限但不太大的系统。只有当大量原子或分子相互作用时才出现的现象需要其他技术。相变就是这样一种现象:众所周知,除非相互作用的物体的数量趋于无穷大,否则不会发生相变。该项目旨在理解从有限系统(即具有有限数量原子的系统)到连续极限(从一开始就假设无限数量相互作用的物体的理论)的过程。特别是,它希望确定有限系统的属性,这些属性揭示了通过增加对象数量而获得的无限系统的属性。该项目的主要数学工具将是代数。数学的几个章节在描述相变中起了作用。分析和代数可能是核心。代数提供了识别物理系统对称性的工具。对称性是将一个系统转换成另一个系统而不改变其整体物理性质的操作。这些对称性提供了接近物理系统并在数学上定义它们的基本方法。该项目的重点是研究有限格点模型及其无限连续极限中的代数结构。研究将集中在微观相互作用的二维晶格模型。这些模型被称为渗流,伊辛模型,XXZ自旋链,稠密和稀环模型等,它们提供了一个自然的实验室来探测物理性质并严格证明它们。它们具有有限数量的“粒子”,可以在计算机上探测,并且它们被认为是(对数)共形场论(一组杰出的研究良好的连续模型)。最重要的是,它们依赖于一种代数描述,这种描述自然地适用于研究大量粒子的极限。 以前在这些方向上的工作,包括其他人和我的工作,对物理和数学都做出了贡献。例如,在物理学中,识别有限系统的新兴性质是有用的,即使只有部分实现。在数学中,对物理系统的代数结构的研究提出了许多新的发展途径或看待现有结果的新方法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SaintAubin, Yvan其他文献

SaintAubin, Yvan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SaintAubin, Yvan', 18)}}的其他基金

Algebraic methods for lattice models of statistical physics
统计物理晶格模型的代数方法
  • 批准号:
    RGPIN-2019-05450
  • 财政年份:
    2021
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Algebraic methods for lattice models of statistical physics
统计物理晶格模型的代数方法
  • 批准号:
    RGPIN-2019-05450
  • 财政年份:
    2020
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Algebraic methods for lattice models of statistical physics
统计物理晶格模型的代数方法
  • 批准号:
    RGPIN-2019-05450
  • 财政年份:
    2019
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
From finite lattice models to continuum field theories
从有限晶格模型到连续介质场论
  • 批准号:
    RGPIN-2014-05102
  • 财政年份:
    2018
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
From finite lattice models to continuum field theories
从有限晶格模型到连续介质场论
  • 批准号:
    RGPIN-2014-05102
  • 财政年份:
    2017
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
From finite lattice models to continuum field theories
从有限晶格模型到连续介质场论
  • 批准号:
    RGPIN-2014-05102
  • 财政年份:
    2016
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
From finite lattice models to continuum field theories
从有限晶格模型到连续介质场论
  • 批准号:
    RGPIN-2014-05102
  • 财政年份:
    2015
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
From finite lattice models to continuum field theories
从有限晶格模型到连续介质场论
  • 批准号:
    RGPIN-2014-05102
  • 财政年份:
    2014
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Exploring critical phenomena with tools from lattice models, CFT and SLE
使用晶格模型、CFT 和 SLE 工具探索关键现象
  • 批准号:
    44323-2009
  • 财政年份:
    2013
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Exploring critical phenomena with tools from lattice models, CFT and SLE
使用晶格模型、CFT 和 SLE 工具探索关键现象
  • 批准号:
    44323-2009
  • 财政年份:
    2012
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

复杂图像处理中的自由非连续问题及其水平集方法研究
  • 批准号:
    60872130
  • 批准年份:
    2008
  • 资助金额:
    28.0 万元
  • 项目类别:
    面上项目
Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Graphical Methods for Ising Lattice Gauge Theory
Ising 格子规范理论的图解方法
  • 批准号:
    575522-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Partial maturation in mosquito-borne flaviviruses: developing new approaches to characterize the role of lattice heterogeneity in fusion, infectivity, and antibody neutralization
蚊媒黄病毒的部分成熟:开发新方法来表征晶格异质性在融合、感染性和抗体中和中的作用
  • 批准号:
    10295650
  • 财政年份:
    2022
  • 资助金额:
    $ 1.53万
  • 项目类别:
Partial maturation in mosquito-borne flaviviruses: developing new approaches to characterize the role of lattice heterogeneity in fusion, infectivity, and antibody neutralization
蚊媒黄病毒的部分成熟:开发新方法来表征晶格异质性在融合、感染性和抗体中和中的作用
  • 批准号:
    10553086
  • 财政年份:
    2022
  • 资助金额:
    $ 1.53万
  • 项目类别:
High performance and high fidelity deterministic neutron transport methods for nuclear reactor lattice physics simulations
用于核反应堆晶格物理模拟的高性能和高保真度确定性中子输运方法
  • 批准号:
    2764533
  • 财政年份:
    2022
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Studentship
Challenge towards the open problems in the theory of lattice polytopes by algebraic and combinatorial methods
用代数和组合方法挑战晶格多胞体理论中的开放问题
  • 批准号:
    21KK0043
  • 财政年份:
    2021
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
Algebraic methods for lattice models of statistical physics
统计物理晶格模型的代数方法
  • 批准号:
    RGPIN-2019-05450
  • 财政年份:
    2021
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Algebraic methods for lattice models of statistical physics
统计物理晶格模型的代数方法
  • 批准号:
    RGPIN-2019-05450
  • 财政年份:
    2020
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Development of calculation methods for lattice QCD in master field formalism
主场形式主义格子QCD计算方法的发展
  • 批准号:
    20K03924
  • 财政年份:
    2020
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Algebraic methods for lattice models of statistical physics
统计物理晶格模型的代数方法
  • 批准号:
    RGPIN-2019-05450
  • 财政年份:
    2019
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Discovery Grants Program - Individual
Self-consistent electron-lattice simulation methods for the strongly correlated quantum systems
强相关量子系统的自洽电子晶格模拟方法
  • 批准号:
    18K03456
  • 财政年份:
    2018
  • 资助金额:
    $ 1.53万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了