Spatial-extent inference and prediction in brain imaging data
脑成像数据的空间范围推断和预测
基本信息
- 批准号:RGPIN-2022-04831
- 负责人:
- 金额:$ 1.38万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The proposed research program focuses on developing statistical methods that address a crucial issue in magnetic resonance imaging (MRI) technology for the human brain. Brain imaging data are rich with information but are high-dimensional and complex, exhibiting spatial autocorrelations that require statistical modelling and inference to disentangle and improve power. In particular, because the number of subjects used in brain imaging studies is relatively small, it is necessary to develop a powerful statistical model to capture most variations of the brain imaging data. Despite high-resolution images obtained by recent MRI technology, current statistical methods do not fully take advantage of the rich information. A key challenge is the massive computational cost of applying the spatial Gaussian process to high dimensional data and permutation to control false positives. Furthermore, even when the computational cost is relaxed, it is unclear how it can be used for clusterwise inference, which is commonly used to improve sensitivity. As a result, current statistical practices include downsampling and smoothing (blurring) the images, which are insufficient and underpowered. This program will develop a novel and unified methodology that addresses statistical and computational challenges for spatial-extent inference. The proposed research program has three specific objectives. First, the PI will consider a sparsity-informed Gaussian process, apply it to compute multivariate test statistics, and then develop a clusterwise inference method that extends scan statistics and a computationally efficient permutation method. Second, the PI will extend it to research in brain imaging by modelling spatial autocorrelation to estimate intermodal correspondence and heritability. Lastly, the proposed approach will be linked to the high-dimensional mediation analysis, which is essential for understanding the brain functions and anatomies related to genotypes and phenotypes. The PI will validate the proposed methodology through applications to large-scale brain imaging databases, including the Adolescent Brain Cognitive Development (ABCD) study, Human Connectome Project (HCP), and UK BioBank. The proposed program addresses a timely statistical methodology that will attract significant attention from both statisticians and practitioners. The proposed methodology will be widely implementable through an R package for reproducibility. It will provide invaluable opportunities for student trainees, and they will be encouraged to participate in the whole process of research, from implementation to publication.
拟议的研究计划的重点是开发统计方法,解决人类大脑磁共振成像(MRI)技术中的一个关键问题。脑成像数据信息丰富,但高维复杂,表现出空间自相关性,需要统计建模和推理来解开和提高功率。特别是,由于脑成像研究中使用的受试者数量相对较少,因此有必要开发一个强大的统计模型来捕获脑成像数据的大多数变化。尽管最近的MRI技术获得了高分辨率的图像,但目前的统计方法并没有充分利用丰富的信息。一个关键的挑战是将空间高斯过程应用于高维数据和置换以控制误报的巨大计算成本。此外,即使当计算成本放宽时,也不清楚它如何用于聚类推理,这通常用于提高灵敏度。因此,目前的统计实践包括对图像进行下采样和平滑(模糊),这是不够的,也是动力不足的。该计划将开发一种新的统一方法,解决空间范围推断的统计和计算挑战。该研究计划有三个具体目标。首先,PI将考虑一个稀疏高斯过程,将其应用于计算多元检验统计量,然后开发一种扩展扫描统计量的聚类推理方法和一种计算效率高的置换方法。其次,PI将通过模拟空间自相关来估计模态间的对应性和遗传性,将其扩展到脑成像研究。最后,所提出的方法将与高维中介分析联系起来,这对于了解与基因型和表型相关的大脑功能和解剖结构至关重要。PI将通过应用于大规模脑成像数据库来验证所提出的方法,包括青少年脑认知发展(ABCD)研究,人类连接组项目(HCP)和英国生物银行。拟议的方案涉及及时的统计方法,将吸引统计人员和从业人员的高度重视。所提出的方法将广泛实施,通过R包的再现性。它将为学员提供宝贵的机会,并鼓励他们参与整个研究过程,从实施到出版。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Park, JunYoung其他文献
Park, JunYoung的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Park, JunYoung', 18)}}的其他基金
Spatial-extent inference and prediction in brain imaging data
脑成像数据的空间范围推断和预测
- 批准号:
DGECR-2022-00458 - 财政年份:2022
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Launch Supplement
相似海外基金
Nature and extent of ecological impacts of vehicle headlights
车辆前灯生态影响的性质和程度
- 批准号:
NE/Z000114/1 - 财政年份:2024
- 资助金额:
$ 1.38万 - 项目类别:
Research Grant
Using AI to reveal the true extent & context of alcohol exposure in videos
利用人工智能揭示真实范围
- 批准号:
DP230100927 - 财政年份:2023
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Projects
Plastic pollution and ocean giants: Investigating the extent and impacts of plastic ingestion by marine megafauna (ref 4597)
塑料污染和海洋巨兽:调查海洋巨型动物摄入塑料的程度和影响(参考文献 4597)
- 批准号:
2859489 - 财政年份:2023
- 资助金额:
$ 1.38万 - 项目类别:
Studentship
Statistical and Psychometric Methods for Measuring the Extent to Which Culturally Responsive Assessments Reduce Cultural Bias
用于衡量文化响应评估减少文化偏见程度的统计和心理测量方法
- 批准号:
2243041 - 财政年份:2023
- 资助金额:
$ 1.38万 - 项目类别:
Standard Grant
Exploring the Extent to Which a New Multifaceted Receptive Vocabulary Test Detects Changes in Lower-Level English Proficiency Learners
探索新的多方面接受词汇测试在多大程度上检测低水平英语水平学习者的变化
- 批准号:
23H04983 - 财政年份:2023
- 资助金额:
$ 1.38万 - 项目类别:
Grant-in-Aid for Encouragement of Scientists
Upcycling Plastic Waste into Graphitic Carbon - Identifying the Roles of Oxygen Content and sp2 Extent in Graphene Forms: Complementary Tests with LDPE and PET
将塑料废物升级改造为石墨碳 - 确定石墨烯形式中氧含量和 sp2 程度的作用:LDPE 和 PET 的补充测试
- 批准号:
2309333 - 财政年份:2023
- 资助金额:
$ 1.38万 - 项目类别:
Standard Grant
To what extent does Australian food policy consider its health impact
澳大利亚食品政策在多大程度上考虑其对健康的影响
- 批准号:
DP230102151 - 财政年份:2023
- 资助金额:
$ 1.38万 - 项目类别:
Discovery Projects
Extent, dynamics and mechanisms of Plasmodium vivax immune evasion caused by PvDBP gene amplification
PvDBP基因扩增引起间日疟原虫免疫逃避的程度、动态及机制
- 批准号:
10734028 - 财政年份:2023
- 资助金额:
$ 1.38万 - 项目类别:
What to extent of the lower tropospheric ozone can be observed from satellites?
从卫星上可以观测到对流层低层臭氧的范围有多大?
- 批准号:
23K03496 - 财政年份:2023
- 资助金额:
$ 1.38万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Quantifying the Extent of Student Learning and Affect Associated with Observed Levels of Instructional Reform
量化与观察到的教学改革水平相关的学生学习和影响的程度
- 批准号:
2240951 - 财政年份:2023
- 资助金额:
$ 1.38万 - 项目类别:
Standard Grant