Statistical Methods for Genetic Risk Predictions across Diverse Populations

不同人群遗传风险预测的统计方法

基本信息

  • 批准号:
    10662188
  • 负责人:
  • 金额:
    $ 56.87万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-08 至 2026-04-30
  • 项目状态:
    未结题

项目摘要

Summary Although genome-wide association studies (GWAS) have been very successful in identifying genetic variants associated with complex diseases and traits, it is still challenging to translate GWAS results into clinically useful disease risk models for improved disease prediction, prevention, diagnosis, prognosis, monitoring, and treatment. Furthermore, most GWAS conducted to date have focused on individuals of European ancestry, making it difficult to derive risk models in other populations. Recent research has suggested shared genetic contributions to complex diseases across populations and the potential benefit of considering functional annotations in cross-population analysis. The ultimate objective of this project is to develop rigorous, efficient, and robust integrative modeling approaches for risk prediction across populations by capitalizing on the vast amount of publicly available GWAS summary data, abundant functional annotations, and a growing number of studies with participants from underrepresented populations. This will be accomplished through five specific aims. The first three aims will develop three complementary approaches for cross-population risk predictions, including: (Aim 1) a Bayesian approach (ME-Pred), along the line of our published work to incorporate either functional annotation information or multiple trait information, that explicitly models joint effect sizes from multiple populations and functional annotations; (Aim 2) an empirical Bayes approach (GWEB) that considers a more general and flexible effect size distribution and statistical inference that does not need a validation cohort for tuning some model parameters; and (Aim 3) a fast and robust Bayesian nonparametric method (SDPR) that is highly adaptive to different genetic architectures and is computationally efficient. Extensive simulations will be performed to compare the performance of these methods and other existing methods. In Aim 4, we will apply these methods to evaluate the potential clinical utility for various diseases and traits, with a focus on underrepresented populations. We will also work closely with investigators from the Yale Generations Project to study the potential benefit of these tools for its study participants, including many from the underrepresented populations. We will then refine the implementations of some methods to reduce computational time and improve the user interface and analysis pipeline in Aim 5. We have assembled a team of investigators with expertise in statistical genetics, medical genetics, and high-performance computing to develop, implement, evaluate, and disseminate the proposed methods. If successful, these methods and tools will lead to more accurate genetic risk predictions in underrepresented populations, addressing a critical need in reducing health disparity.
总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

HONGYU ZHAO其他文献

HONGYU ZHAO的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('HONGYU ZHAO', 18)}}的其他基金

Statistical Methods for Genetic Risk Predictions across Diverse Populations
不同人群遗传风险预测的统计方法
  • 批准号:
    10391800
  • 财政年份:
    2022
  • 资助金额:
    $ 56.87万
  • 项目类别:
Data Management Core
数据管理核心
  • 批准号:
    10698039
  • 财政年份:
    2022
  • 资助金额:
    $ 56.87万
  • 项目类别:
Statistical Methods for Genetic Risk Predictions across Diverse Populations
不同人群遗传风险预测的统计方法
  • 批准号:
    10731582
  • 财政年份:
    2022
  • 资助金额:
    $ 56.87万
  • 项目类别:
Statistical Methods for Analyzing Birth Defects Cohorts
分析出生缺陷队列的统计方法
  • 批准号:
    10372041
  • 财政年份:
    2021
  • 资助金额:
    $ 56.87万
  • 项目类别:
Analytical Core
分析核心
  • 批准号:
    9336550
  • 财政年份:
    2011
  • 资助金额:
    $ 56.87万
  • 项目类别:
Analytical Core
分析核心
  • 批准号:
    8555273
  • 财政年份:
    2011
  • 资助金额:
    $ 56.87万
  • 项目类别:
Lost-of-function variants in the 1000 genomes data set and implications to GWAS
1000 个基因组数据集中的功能丧失变异及其对 GWAS 的影响
  • 批准号:
    7882977
  • 财政年份:
    2010
  • 资助金额:
    $ 56.87万
  • 项目类别:
Lost-of-function variants in the 1000 genomes data set and implications to GWAS
1000 个基因组数据集中的功能丧失变异及其对 GWAS 的影响
  • 批准号:
    8141451
  • 财政年份:
    2010
  • 资助金额:
    $ 56.87万
  • 项目类别:
International Symposium on Genome-Wide Association Studies
全基因组关联研究国际研讨会
  • 批准号:
    7193776
  • 财政年份:
    2006
  • 资助金额:
    $ 56.87万
  • 项目类别:
Theoretical Studies of Linkage Disequilibrium
连锁不平衡的理论研究
  • 批准号:
    6879911
  • 财政年份:
    2004
  • 资助金额:
    $ 56.87万
  • 项目类别:

相似海外基金

Evaluation and construction of the Bayesian method to accelerate drug development
加速药物开发的贝叶斯方法的评估和构建
  • 批准号:
    23K11015
  • 财政年份:
    2023
  • 资助金额:
    $ 56.87万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Measurement of economic disparity using the Bayesian method
使用贝叶斯方法测量经济差距
  • 批准号:
    16K03589
  • 财政年份:
    2016
  • 资助金额:
    $ 56.87万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A Novel Trio-based Bayesian Method to Identify Rare Variants for Birth Defects
一种新的基于三重奏的贝叶斯方法来识别出生缺陷的罕见变异
  • 批准号:
    9249077
  • 财政年份:
    2016
  • 资助金额:
    $ 56.87万
  • 项目类别:
A Novel Trio-based Bayesian Method to Identify Rare Variants for Birth Defects
一种新的基于三重奏的贝叶斯方法来识别出生缺陷的罕见变异
  • 批准号:
    9035008
  • 财政年份:
    2016
  • 资助金额:
    $ 56.87万
  • 项目类别:
Improvement of McNemar test using Bayesian method
使用贝叶斯方法改进麦克尼马尔检验
  • 批准号:
    16K19249
  • 财政年份:
    2016
  • 资助金额:
    $ 56.87万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Hierarchical Bayesian method for analyzing high polymorphic HLA genome sequence
分析高多态性 HLA 基因组序列的分层贝叶斯方法
  • 批准号:
    15H02775
  • 财政年份:
    2015
  • 资助金额:
    $ 56.87万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Correcting Hazard Ratio Estimates for Outcome Misclassification: a Bayesian Method
纠正结果错误分类的风险比估计:贝叶斯方法
  • 批准号:
    327718
  • 财政年份:
    2015
  • 资助金额:
    $ 56.87万
  • 项目类别:
    Operating Grants
Non-parametric Bayesian Method Development
非参数贝叶斯方法开发
  • 批准号:
    10928617
  • 财政年份:
  • 资助金额:
    $ 56.87万
  • 项目类别:
Non-parametric Bayesian Method Development
非参数贝叶斯方法开发
  • 批准号:
    10255718
  • 财政年份:
  • 资助金额:
    $ 56.87万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了