Statistical Methods for Genetic Risk Predictions across Diverse Populations
不同人群遗传风险预测的统计方法
基本信息
- 批准号:10662188
- 负责人:
- 金额:$ 56.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-08 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:AddressBayesian MethodBenchmarkingClinicalComplexDataDiagnosisDiseaseEuropeanEuropean ancestryGenerationsGeneticGenetic RiskGenomeGoalsHeritabilityHigh Performance ComputingHuman GenomeIndividualJointsMedical GeneticsMethodsModelingMonitorParticipantPerformancePopulationPopulation AnalysisPopulation HeterogeneityPreventionProceduresPrognosisPublishingReduce health disparitiesResearchResearch PersonnelRiskSamplingStandardizationStatistical MethodsStructureTimeTranslatingTranslationsUnderrepresented PopulationsValidationVariantWorkanalysis pipelinecohortdata integrationdesigndisorder riskexperienceflexibilitygenetic architecturegenetic variantgenome wide association studyimprovedlarge datasetsnovelparallelizationrecruitrisk predictionrisk prediction modelsimulationstatisticstooltraituser-friendlyweb server
项目摘要
Summary
Although genome-wide association studies (GWAS) have been very successful in identifying genetic variants
associated with complex diseases and traits, it is still challenging to translate GWAS results into clinically
useful disease risk models for improved disease prediction, prevention, diagnosis, prognosis, monitoring, and
treatment. Furthermore, most GWAS conducted to date have focused on individuals of European ancestry,
making it difficult to derive risk models in other populations. Recent research has suggested shared genetic
contributions to complex diseases across populations and the potential benefit of considering functional
annotations in cross-population analysis. The ultimate objective of this project is to develop rigorous, efficient,
and robust integrative modeling approaches for risk prediction across populations by capitalizing on the vast
amount of publicly available GWAS summary data, abundant functional annotations, and a growing number of
studies with participants from underrepresented populations. This will be accomplished through five specific
aims. The first three aims will develop three complementary approaches for cross-population risk predictions,
including: (Aim 1) a Bayesian approach (ME-Pred), along the line of our published work to incorporate either
functional annotation information or multiple trait information, that explicitly models joint effect sizes from
multiple populations and functional annotations; (Aim 2) an empirical Bayes approach (GWEB) that considers a
more general and flexible effect size distribution and statistical inference that does not need a validation cohort
for tuning some model parameters; and (Aim 3) a fast and robust Bayesian nonparametric method (SDPR) that
is highly adaptive to different genetic architectures and is computationally efficient. Extensive simulations will
be performed to compare the performance of these methods and other existing methods. In Aim 4, we will
apply these methods to evaluate the potential clinical utility for various diseases and traits, with a focus on
underrepresented populations. We will also work closely with investigators from the Yale Generations Project
to study the potential benefit of these tools for its study participants, including many from the underrepresented
populations. We will then refine the implementations of some methods to reduce computational time and
improve the user interface and analysis pipeline in Aim 5. We have assembled a team of investigators with
expertise in statistical genetics, medical genetics, and high-performance computing to develop, implement,
evaluate, and disseminate the proposed methods. If successful, these methods and tools will lead to more
accurate genetic risk predictions in underrepresented populations, addressing a critical need in reducing health
disparity.
总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
HONGYU ZHAO其他文献
HONGYU ZHAO的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('HONGYU ZHAO', 18)}}的其他基金
Statistical Methods for Genetic Risk Predictions across Diverse Populations
不同人群遗传风险预测的统计方法
- 批准号:
10391800 - 财政年份:2022
- 资助金额:
$ 56.87万 - 项目类别:
Statistical Methods for Genetic Risk Predictions across Diverse Populations
不同人群遗传风险预测的统计方法
- 批准号:
10731582 - 财政年份:2022
- 资助金额:
$ 56.87万 - 项目类别:
Statistical Methods for Analyzing Birth Defects Cohorts
分析出生缺陷队列的统计方法
- 批准号:
10372041 - 财政年份:2021
- 资助金额:
$ 56.87万 - 项目类别:
Lost-of-function variants in the 1000 genomes data set and implications to GWAS
1000 个基因组数据集中的功能丧失变异及其对 GWAS 的影响
- 批准号:
7882977 - 财政年份:2010
- 资助金额:
$ 56.87万 - 项目类别:
Lost-of-function variants in the 1000 genomes data set and implications to GWAS
1000 个基因组数据集中的功能丧失变异及其对 GWAS 的影响
- 批准号:
8141451 - 财政年份:2010
- 资助金额:
$ 56.87万 - 项目类别:
International Symposium on Genome-Wide Association Studies
全基因组关联研究国际研讨会
- 批准号:
7193776 - 财政年份:2006
- 资助金额:
$ 56.87万 - 项目类别:
相似海外基金
Evaluation and construction of the Bayesian method to accelerate drug development
加速药物开发的贝叶斯方法的评估和构建
- 批准号:
23K11015 - 财政年份:2023
- 资助金额:
$ 56.87万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Measurement of economic disparity using the Bayesian method
使用贝叶斯方法测量经济差距
- 批准号:
16K03589 - 财政年份:2016
- 资助金额:
$ 56.87万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A Novel Trio-based Bayesian Method to Identify Rare Variants for Birth Defects
一种新的基于三重奏的贝叶斯方法来识别出生缺陷的罕见变异
- 批准号:
9249077 - 财政年份:2016
- 资助金额:
$ 56.87万 - 项目类别:
A Novel Trio-based Bayesian Method to Identify Rare Variants for Birth Defects
一种新的基于三重奏的贝叶斯方法来识别出生缺陷的罕见变异
- 批准号:
9035008 - 财政年份:2016
- 资助金额:
$ 56.87万 - 项目类别:
Improvement of McNemar test using Bayesian method
使用贝叶斯方法改进麦克尼马尔检验
- 批准号:
16K19249 - 财政年份:2016
- 资助金额:
$ 56.87万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Hierarchical Bayesian method for analyzing high polymorphic HLA genome sequence
分析高多态性 HLA 基因组序列的分层贝叶斯方法
- 批准号:
15H02775 - 财政年份:2015
- 资助金额:
$ 56.87万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Correcting Hazard Ratio Estimates for Outcome Misclassification: a Bayesian Method
纠正结果错误分类的风险比估计:贝叶斯方法
- 批准号:
327718 - 财政年份:2015
- 资助金额:
$ 56.87万 - 项目类别:
Operating Grants














{{item.name}}会员




