Machine learning techniques to improve router configurations in large optical networks

用于改进大型光网络中路由器配置的机器学习技术

基本信息

  • 批准号:
    576629-2022
  • 负责人:
  • 金额:
    $ 1.46万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Alliance Grants
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

We propose to use machine learning techniques to automate the tuning of router configurations in large optical networks; automated tuning should lead to better responsiveness to congestion issues and less error-prone operation. Through our proposed collaboration with Ciena we will have access to log data that captures Interior Gateway Protocol (IGP) metrics such as inbound and outbound traffic on links in a large network, as well as configuration changes performed by human operators. Using supervised learning, we propose to learn in which context the configuration changes are performed. Next, we will create a simulation that is capable of roughly generating the same data as the logs we have, where we will apply the model that we learned in the previous stage. This will give us a baseline performance evaluation. To improve on our initial model, we propose to use reinforcement learning in the simulator obtained in the previous step. Finally, we propose to test the resulting reinforcement learning policy in a small lab with actual routers; this should helps us evaluate what changes may be necessary and which risks to expect when going "live".
我们建议使用机器学习技术来自动调整大型光网络中的路由器配置;自动调整应能更好地响应拥塞问题和减少出错操作。通过我们与Ciena的合作,我们将能够访问捕获内部网关协议(IGP)指标的日志数据,例如大型网络中链路上的入站和出站流量,以及人工操作员执行的配置更改。使用监督学习,我们建议学习在哪个上下文中执行配置更改。接下来,我们将创建一个模拟,该模拟能够大致生成与我们拥有的日志相同的数据,其中我们将应用我们在前一阶段学习的模型。这将给我们一个基线性能评估。为了改进我们的初始模型,我们建议在上一步获得的模拟器中使用强化学习。最后,我们建议在一个小型实验室中使用实际路由器测试由此产生的强化学习策略;这应该有助于我们评估可能需要进行哪些更改以及“实时”时预期的风险。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Esfandiari, BabakB其他文献

Esfandiari, BabakB的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Esfandiari, BabakB', 18)}}的其他基金

Toward a Hardware Architecture for Belief-Desire-Intention-based Agents
面向基于信念-愿望-意图的智能体的硬件架构
  • 批准号:
    558263-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Alliance Grants

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
  • 批准号:
    62003314
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
  • 批准号:
    61902016
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
儿童音乐能力发展对语言与社会认知能力及脑发育的影响
  • 批准号:
    31971003
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
  • 批准号:
    61806040
  • 批准年份:
    2018
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
  • 批准号:
    51769027
  • 批准年份:
    2017
  • 资助金额:
    38.0 万元
  • 项目类别:
    地区科学基金项目
多场景网络学习中基于行为-情感-主题联合建模的学习者兴趣挖掘关键技术研究
  • 批准号:
    61702207
  • 批准年份:
    2017
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
基于异构医学影像数据的深度挖掘技术及中枢神经系统重大疾病的精准预测
  • 批准号:
    61672236
  • 批准年份:
    2016
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

Postdoctoral Fellowship: OPP-PRF: Leveraging Community Structure Data and Machine Learning Techniques to Improve Microbial Functional Diversity in an Arctic Ocean Ecosystem Model
博士后奖学金:OPP-PRF:利用群落结构数据和机器学习技术改善北冰洋生态系统模型中的微生物功能多样性
  • 批准号:
    2317681
  • 财政年份:
    2024
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Standard Grant
Automated analysis of volcano imagery with machine learning techniques
利用机器学习技术自动分析火山图像
  • 批准号:
    2908452
  • 财政年份:
    2024
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Studentship
Optimization of Power Electronics using Artificial Intelligence and Machine Learning Techniques
使用人工智能和机器学习技术优化电力电子
  • 批准号:
    2890188
  • 财政年份:
    2023
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Studentship
Customizable Artificial Intelligence for the Biomedical Masses: Development of a User-Friendly Automated Machine Learning Platform for Biology Image Analysis.
面向生物医学大众的可定制人工智能:开发用于生物图像分析的用户友好的自动化机器学习平台。
  • 批准号:
    10699828
  • 财政年份:
    2023
  • 资助金额:
    $ 1.46万
  • 项目类别:
Accurate and Reliable Diagnostics for Injured Children: Machine Learning for Ultrasound
为受伤儿童提供准确可靠的诊断:超声机器学习
  • 批准号:
    10572582
  • 财政年份:
    2023
  • 资助金额:
    $ 1.46万
  • 项目类别:
Discovering clinical endpoints of toxicity via graph machine learning and semantic data analysis
通过图机器学习和语义数据分析发现毒性的临床终点
  • 批准号:
    10745593
  • 财政年份:
    2023
  • 资助金额:
    $ 1.46万
  • 项目类别:
Machine Learning with Scintillation Photon Counting Detectors to Advance PET Imaging Performance
利用闪烁光子计数探测器进行机器学习以提高 PET 成像性能
  • 批准号:
    10742435
  • 财政年份:
    2023
  • 资助金额:
    $ 1.46万
  • 项目类别:
Computer-assisted diagnosis of ear pathologies by combining digital otoscopy with complementary data using machine learning
通过使用机器学习将数字耳镜与补充数据相结合来计算机辅助诊断耳部病变
  • 批准号:
    10564534
  • 财政年份:
    2023
  • 资助金额:
    $ 1.46万
  • 项目类别:
CAREER: Data-driven design of graphene oxide for environmental applications enabled by natural language processing and machine learning techniques
职业:通过自然语言处理和机器学习技术实现氧化石墨烯环境应用的数据驱动设计
  • 批准号:
    2238415
  • 财政年份:
    2023
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Continuing Grant
Enhancing water Cherenkov detector technology with machine learning techniques applied at a test beam experiment
通过在测试光束实验中应用机器学习技术来增强水切伦科夫探测器技术
  • 批准号:
    EP/X027368/1
  • 财政年份:
    2023
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了