课题基金基金详情
拟共形映射中的极值问题
结题报告
批准号:
19901032
项目类别:
青年科学基金项目
资助金额:
4.0 万元
负责人:
漆毅
依托单位:
学科分类:
A0201.单复变函数论
结题年份:
2002
批准年份:
1999
项目状态:
已结题
项目参与者:
--
国基评审专家1V1指导 中标率高出同行96.8%
结合最新热点,提供专业选题建议
深度指导申报书撰写,确保创新可行
指导项目中标800+,快速提高中标率
客服二维码
微信扫码咨询
中文摘要
主要研究Strebel提出的变化集的结果,尤其是其边界点的结构;研究拓扑四边形的模与T(A)蟹荢trebel点的极值最大伸缩商的关系;研究不唯一极值的同伦类中Teichmuller极值存在性与唯一性.通过这些问题的研究势必导致对两个由来已久的极值问题,即极值映射的划画与唯一性问题产生更深入的了解,并且对为Teichmuller空间中Strebel点与非Strebel点的研究产生影响..
英文摘要
The extremal problems of quasiconformal mappings are mainly concerned in this project. The problem of whether the maximal dilatation is equal to the extremal maximal dilatation of a quasisymmetric mapping with substantial points is studied. We prove that the two.quantities are equal for a large class of such mappings. Together with a result obtained later by Shen YuLian, a problem on quasiconformal mappings is answered. Some related properties of variability sets of quasisymmtric mappings and the Hamilton sequences formed by point.shift differentials are studied. We prove that a Hamilton sequence formed by point shift differentials is either convergent in norm or is a commonHamilton sequence for all extremal Beltrami differentials of the same class. Using variability sets, the non-Strebel points are divided into two class and studied. We prove that every non-Strebel point is the end point.of a holomorphic arc, on the same sphere with such point and centered at the base point, on which all points (may not include such end point) have variability sets with non-empty interiors. The existence problem of locally extremal Beltrami differentials, which is closely related to the substantial points and common Hamilton sequences of extremal Beltrami differentials and which is of its own independent meaning, are also studied. We prove that the locally extremal Beltrami differentials always exist when the domain is a disk or the boundary of the domain is not too bad. This partly and affirmatively answers an open problem posed by F. Gardiner and N. Lakic.
期刊论文列表
专著列表
科研奖励列表
会议论文列表
专利列表
A Remark on Teichmuller Spaces
关于泰希米勒空间的评论
DOI:--
发表时间:--
期刊:数学进展,
影响因子:--
作者:漆毅
通讯作者:漆毅
DOI:--
发表时间:--
期刊:Chinese Science Bulletin
影响因子:--
作者:李忠;伍胜健;漆毅
通讯作者:漆毅
Local boundary dilatation of quasiconformal maps in the disk
圆盘中准共形映射的局部边界膨胀
DOI:10.1090/s0002-9939-01-06353-5
发表时间:2001-10
期刊:Proc. of the Amer. Math. Soc.
影响因子:--
作者:崔贵珍;漆毅
通讯作者:漆毅
Non-Strebel points and variability set
非 Strebel 点和变异集
DOI:--
发表时间:--
期刊:Science in China Ser. A,
影响因子:--
作者:漆毅;伍胜健
通讯作者:伍胜健
拟共形Teichmuller空间的度量几何及相关问题
  • 批准号:
    12271017
  • 项目类别:
    面上项目
  • 资助金额:
    45万元
  • 批准年份:
    2022
  • 负责人:
    漆毅
  • 依托单位:
拟共形Teichmuller理论中的若干问题
  • 批准号:
    11871085
  • 项目类别:
    面上项目
  • 资助金额:
    53.0万元
  • 批准年份:
    2018
  • 负责人:
    漆毅
  • 依托单位:
Teichmuller度量几何及其相关问题
  • 批准号:
    11371045
  • 项目类别:
    面上项目
  • 资助金额:
    62.0万元
  • 批准年份:
    2013
  • 负责人:
    漆毅
  • 依托单位:
拟共形映射的极值问题
  • 批准号:
    10971008
  • 项目类别:
    面上项目
  • 资助金额:
    25.0万元
  • 批准年份:
    2009
  • 负责人:
    漆毅
  • 依托单位:
拟共形Teichmuller空间与复动力系统
  • 批准号:
    10571009
  • 项目类别:
    面上项目
  • 资助金额:
    22.0万元
  • 批准年份:
    2005
  • 负责人:
    漆毅
  • 依托单位:
国内基金
海外基金