Units in Number Fields

数字字段中的单位

基本信息

  • 批准号:
    8104761
  • 负责人:
  • 金额:
    $ 3.16万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1981
  • 资助国家:
    美国
  • 起止时间:
    1981-06-01 至 1984-10-31
  • 项目状态:
    已结题

项目摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Barry Mazur其他文献

Local euler characteristics
局部欧拉特征
  • DOI:
  • 发表时间:
    1970
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Barry Mazur;L. Roberts
  • 通讯作者:
    L. Roberts
Is it Plausible?
  • DOI:
    10.1007/s00283-013-9398-0
  • 发表时间:
    2013-08-16
  • 期刊:
  • 影响因子:
    0.400
  • 作者:
    Barry Mazur
  • 通讯作者:
    Barry Mazur
The B.E. Journal of Theoretical Economics Contributions
该会。
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Roland Fryer;Matthew O. Jackson;Michael Alvarez;Josh Angrist;John Bargh;Gary Becker;Douglas Bernheim;John Cacioppo;Colin F. Camerer;Gerald Clore;Glenn El;Daniel Gilbert;Edward Glaeser;Susan Fiske;Dan Friedman;D. Fudenberg;Claire Hill;Bengt Holmstrom;P. Jéhiel;Vijay Krishna;Steven Levitt;Glenn Loury;George Lowen;Robert Marshall;Barry Mazur;Scott Page;Thomas Palfrey;Michael Piore;Antonio Rangel;Andrei Shleifer;Tomas Sj¨ostr¨om;Steve Tadelis
  • 通讯作者:
    Steve Tadelis
Orthotopy and spherical knots
Existential definability and diophantine stability
  • DOI:
    10.1016/j.jnt.2023.04.011
  • 发表时间:
    2024-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Barry Mazur;Karl Rubin;Alexandra Shlapentokh
  • 通讯作者:
    Alexandra Shlapentokh

Barry Mazur的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Barry Mazur', 18)}}的其他基金

FRG: Collaborative Research: Definability and Computability over Arithmetically Significant Fields
FRG:协作研究:算术上重要字段的可定义性和可计算性
  • 批准号:
    2152149
  • 财政年份:
    2022
  • 资助金额:
    $ 3.16万
  • 项目类别:
    Standard Grant
L-functions and Arithmetic
L 函数和算术
  • 批准号:
    1601028
  • 财政年份:
    2016
  • 资助金额:
    $ 3.16万
  • 项目类别:
    Standard Grant
Number Theory and Related Fields
数论及相关领域
  • 批准号:
    1302409
  • 财政年份:
    2013
  • 资助金额:
    $ 3.16万
  • 项目类别:
    Standard Grant
Number Theory and Related Fields
数论及相关领域
  • 批准号:
    0968831
  • 财政年份:
    2010
  • 资助金额:
    $ 3.16万
  • 项目类别:
    Continuing Grant
Number Theory and Related Fields
数论及相关领域
  • 批准号:
    0700580
  • 财政年份:
    2007
  • 资助金额:
    $ 3.16万
  • 项目类别:
    Continuing Grant
Eigenvarieties
特征簇
  • 批准号:
    0514066
  • 财政年份:
    2005
  • 资助金额:
    $ 3.16万
  • 项目类别:
    Standard Grant
Number Theory and Related Fields
数论及相关领域
  • 批准号:
    0403374
  • 财政年份:
    2004
  • 资助金额:
    $ 3.16万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Conference on Recent Developments in Number Theory; Cambridge, Mass. May 6-10, 1985
数学科学:数论最新发展会议;
  • 批准号:
    8415199
  • 财政年份:
    1985
  • 资助金额:
    $ 3.16万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Some Questions Concerning Drinfeld's Elliptic Modules and Higher-Dimensional Generalizations
数学科学:有关德林菲尔德椭圆模和高维推广的一些问题
  • 批准号:
    8405081
  • 财政年份:
    1984
  • 资助金额:
    $ 3.16万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Topology and Geometry
数学科学:拓扑与几何
  • 批准号:
    8310880
  • 财政年份:
    1983
  • 资助金额:
    $ 3.16万
  • 项目类别:
    Continuing Grant

相似国自然基金

关于群上的短零和序列及其cross number的研究
  • 批准号:
    11501561
  • 批准年份:
    2015
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Counting number fields with finite Abelian Galois group of bounded conductor that can be described as the sum of two squares.
使用有界导体的有限阿贝尔伽罗瓦群来计算数域,可以将其描述为两个平方和。
  • 批准号:
    2889914
  • 财政年份:
    2023
  • 资助金额:
    $ 3.16万
  • 项目类别:
    Studentship
Symmetry: Groups, Graphs, Number Fields and Loops
对称性:群、图、数域和循环
  • 批准号:
    DP230101268
  • 财政年份:
    2023
  • 资助金额:
    $ 3.16万
  • 项目类别:
    Discovery Projects
LEAPS-MPS: Number Fields Generated by Points of Curves and their Galois Groups
LEAPS-MPS:由曲线点及其伽罗瓦群生成的数域
  • 批准号:
    2316946
  • 财政年份:
    2023
  • 资助金额:
    $ 3.16万
  • 项目类别:
    Standard Grant
Additive number theory in number fields
数域中的加法数论
  • 批准号:
    22K13886
  • 财政年份:
    2022
  • 资助金额:
    $ 3.16万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
L-functions over number fields and function fields
数域和函数域上的 L 函数
  • 批准号:
    RGPIN-2019-05536
  • 财政年份:
    2022
  • 资助金额:
    $ 3.16万
  • 项目类别:
    Discovery Grants Program - Individual
Arithmetic Statistics: Asymptotics on number fields and their class groups
算术统计:数域及其类群的渐近
  • 批准号:
    RGPIN-2020-06146
  • 财政年份:
    2022
  • 资助金额:
    $ 3.16万
  • 项目类别:
    Discovery Grants Program - Individual
Distribution problems for L-functions and number fields
L 函数和数域的分布问题
  • 批准号:
    RGPIN-2021-02952
  • 财政年份:
    2022
  • 资助金额:
    $ 3.16万
  • 项目类别:
    Discovery Grants Program - Individual
Analytic Number Theory over Function Fields
函数域的解析数论
  • 批准号:
    2101491
  • 财政年份:
    2021
  • 资助金额:
    $ 3.16万
  • 项目类别:
    Continuing Grant
Distribution problems for L-functions and number fields
L 函数和数域的分布问题
  • 批准号:
    RGPIN-2021-02952
  • 财政年份:
    2021
  • 资助金额:
    $ 3.16万
  • 项目类别:
    Discovery Grants Program - Individual
Number Theory in Function Fields
函数域中的数论
  • 批准号:
    RGPIN-2016-03720
  • 财政年份:
    2021
  • 资助金额:
    $ 3.16万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了