Brauer Groups of Homogeneous Spaces and the Theory of Representations and Group Actions Over Fields of Positive Characteristic (Mathematical Sciences)
齐次空间的布劳尔群以及正特征域上的表示理论和群行为(数学科学)
基本信息
- 批准号:8202040
- 负责人:
- 金额:$ 1.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1982
- 资助国家:美国
- 起止时间:1982-06-01 至 1983-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William Haboush其他文献
William Haboush的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('William Haboush', 18)}}的其他基金
Mathematical Sciences: The Combinatoric Structure of Representations of Semi-Simple Groups Over Valued Fields
数学科学:有价值域上半单群表示的组合结构
- 批准号:
9006321 - 财政年份:1990
- 资助金额:
$ 1.3万 - 项目类别:
Standard Grant
Mathematical Sciences: The Linearization Problem for Reductive Actions on Affine Spaces
数学科学:仿射空间还原作用的线性化问题
- 批准号:
8501935 - 财政年份:1985
- 资助金额:
$ 1.3万 - 项目类别:
Standard Grant
Two Problems in the Theory of Algebraic Groups
代数群理论中的两个问题
- 批准号:
7904468 - 财政年份:1979
- 资助金额:
$ 1.3万 - 项目类别:
Standard Grant
Principal Orbit Theorems For Affine Actions
仿射作用的主轨道定理
- 批准号:
7507523 - 财政年份:1975
- 资助金额:
$ 1.3万 - 项目类别:
Standard Grant
相似海外基金
Conference: I.H.E.S. Workshop: Homogeneous Dynamics and Geometry in Higher-Rank Lie Groups
会议:I.H.E.S.
- 批准号:
2321093 - 财政年份:2023
- 资助金额:
$ 1.3万 - 项目类别:
Standard Grant
Weyl groups and Weyl chamber associated to a Cartan decomposition for reductive real spherical homogeneous space
与还原实球形均匀空间的嘉当分解相关的韦尔群和韦尔室
- 批准号:
23K03037 - 财政年份:2023
- 资助金额:
$ 1.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Automorphism groups of homogeneous structures
齐次结构的自同构群
- 批准号:
2712596 - 财政年份:2021
- 资助金额:
$ 1.3万 - 项目类别:
Studentship
Algebraic and Geometric Aspects of Algebraic Groups and Homogeneous Varieties
代数群和齐次簇的代数和几何方面
- 批准号:
RGPIN-2016-05215 - 财政年份:2021
- 资助金额:
$ 1.3万 - 项目类别:
Discovery Grants Program - Individual
Complex geometric structures and their moduli on Lie groups and homogeneous spaces
李群和齐次空间上的复杂几何结构及其模
- 批准号:
21K03248 - 财政年份:2021
- 资助金额:
$ 1.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Algebraic and Geometric Aspects of Algebraic Groups and Homogeneous Varieties
代数群和齐次簇的代数和几何方面
- 批准号:
RGPIN-2016-05215 - 财政年份:2019
- 资助金额:
$ 1.3万 - 项目类别:
Discovery Grants Program - Individual
Algebraic and Geometric Aspects of Algebraic Groups and Homogeneous Varieties
代数群和齐次簇的代数和几何方面
- 批准号:
RGPIN-2016-05215 - 财政年份:2018
- 资助金额:
$ 1.3万 - 项目类别:
Discovery Grants Program - Individual
Arithmetic of Homogeneous Spaces under Linear Algebraic Groups
线性代数群下齐次空间的算术
- 批准号:
1801951 - 财政年份:2018
- 资助金额:
$ 1.3万 - 项目类别:
Standard Grant
Locally homogeneous Kaehler manifolds and Transformation groups
局部齐次凯勒流形和变换群
- 批准号:
18K03284 - 财政年份:2018
- 资助金额:
$ 1.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Algebraic and Geometric Aspects of Algebraic Groups and Homogeneous Varieties
代数群和齐次簇的代数和几何方面
- 批准号:
RGPIN-2016-05215 - 财政年份:2017
- 资助金额:
$ 1.3万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




