Mathematical Sciences: RUI: Numerical Solution of the Eigenvalue Problem of Symmetric Rationally Generated Toeplitz Matrices
数学科学:RUI:对称有理生成托普利茨矩阵特征值问题的数值解
基本信息
- 批准号:8707080
- 负责人:
- 金额:$ 7.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1987
- 资助国家:美国
- 起止时间:1987-07-01 至 1989-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research program is concerned with the properties and computation of the eigenvalues and eigenvectors of Toeplitz matrices (whose element in the ith row and jth column depends only on i-j). Such matrices arise naturally in the discretization of differential equations as well as from series representation of analytic functions. The main focus of this research program is to reduce the computing cost for the eigenvalue problem to a point where it is essentially independent of the size of the matrix. Eigenvalue problems for Toeplitz matrices arise in all fields of applications. The results sought by this research program will benefit all areas of science and engineering.
本研究计划关注的是 的特征值和特征向量的计算 Toeplitz矩阵(其元素在第i行和第j列 仅取决于i-j)。 这样的矩阵自然出现在 微分方程的离散化以及从级数 解析函数的表示。 这其中的主要焦点 研究计划是为了降低计算成本, 特征值问题到一个点,它本质上是 与矩阵的大小无关。 Toeplitz矩阵的特征值问题出现在 所有应用领域。 这所追求的结果 研究计划将有利于所有科学领域, 工程.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
William Trench其他文献
William Trench的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('William Trench', 18)}}的其他基金
Mathematical Sciences: RUI: Spectral Properties of Structured Matrices
数学科学:RUI:结构化矩阵的谱性质
- 批准号:
9305856 - 财政年份:1993
- 资助金额:
$ 7.17万 - 项目类别:
Standard Grant
Mathematical Sciences: RUI: Spectral Problems for Toeplitz and Other Structured Matrices
数学科学:RUI:Toeplitz 和其他结构化矩阵的谱问题
- 批准号:
9108254 - 财政年份:1991
- 资助金额:
$ 7.17万 - 项目类别:
Standard Grant
Mathematical Sciences: Numerical Solution of Spectral Problems for Efficiently Structured Hermitian Matrices
数学科学:高效结构厄米特矩阵谱问题的数值解
- 批准号:
8907939 - 财政年份:1989
- 资助金额:
$ 7.17万 - 项目类别:
Continuing Grant
相似国自然基金
Handbook of the Mathematics of the Arts and Sciences的中文翻译
- 批准号:12226504
- 批准年份:2022
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
SCIENCE CHINA: Earth Sciences
- 批准号:41224003
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21224005
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Information Sciences
- 批准号:61224002
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51224001
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21024806
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
- 批准号:81024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
- 批准号:41024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
Mathematical Sciences: "RUI: Magnetohydrostatic Problems Relevant to Current Sheets and Heating of the Solar Corona"
数学科学:“RUI:与电流片和日冕加热相关的磁流体静力问题”
- 批准号:
9622923 - 财政年份:1996
- 资助金额:
$ 7.17万 - 项目类别:
Standard Grant
Mathematical Sciences\RUI: Problems in Algebra: Group Actions on Trees and Buildings
数学科学RUI:代数问题:树木和建筑物的群作用
- 批准号:
9623282 - 财政年份:1996
- 资助金额:
$ 7.17万 - 项目类别:
Standard Grant
Mathematical Sciences: RUI Inverse Problems in Thermal Imaging
数学科学:热成像中的 RUI 反问题
- 批准号:
9623279 - 财政年份:1996
- 资助金额:
$ 7.17万 - 项目类别:
Continuing Grant
Mathematical Sciences: RUI: Minimal Surfaces, Clusters, and Singular Geometry
数学科学:RUI:最小曲面、簇和奇异几何
- 批准号:
9625641 - 财政年份:1996
- 资助金额:
$ 7.17万 - 项目类别:
Continuing Grant
Mathematical Sciences: RUI: Topological Embeddings in Piecewise Linear Manifolds
数学科学:RUI:分段线性流形中的拓扑嵌入
- 批准号:
9626221 - 财政年份:1996
- 资助金额:
$ 7.17万 - 项目类别:
Standard Grant
RUI: Mathematical Sciences: Spherical Characters on P-adic Coset Spaces and the Relative Trace Formula
RUI:数学科学:P-进陪集空间上的球面特征和相对迹公式
- 批准号:
9623125 - 财政年份:1996
- 资助金额:
$ 7.17万 - 项目类别:
Standard Grant
Mathematical Sciences: RUI: Mathematical Modeling of Hematopoiesis and Cell Cycles in Escherichia coli
数学科学:RUI:大肠杆菌造血和细胞周期的数学模型
- 批准号:
9627047 - 财政年份:1996
- 资助金额:
$ 7.17万 - 项目类别:
Continuing Grant
Mathematical Sciences: RUI: Dupin Submanifolds
数学科学:RUI:杜宾子流形
- 批准号:
9504535 - 财政年份:1995
- 资助金额:
$ 7.17万 - 项目类别:
Continuing Grant
Mathematical Sciences: RUI: Geometric Tomography
数学科学:RUI:几何断层扫描
- 批准号:
9501289 - 财政年份:1995
- 资助金额:
$ 7.17万 - 项目类别:
Standard Grant
Mathematical Sciences: RUI: Spaces of Holomorphic Functions and Their Operators
数学科学:RUI:全纯函数空间及其运算符
- 批准号:
9502983 - 财政年份:1995
- 资助金额:
$ 7.17万 - 项目类别:
Standard Grant