The Limit of High Reynolds Number for Shear Layers
剪切层高雷诺数的极限
基本信息
- 批准号:8903484
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1989
- 资助国家:美国
- 起止时间:1989-06-15 至 1990-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
8903484 Baker The principal investigator will study the limit at high Reynolds number of shear layers in incompressible fluid using three different methods--vortex methods, spectral methods, and finite difference methods. Classically, the limit is thought to be a vortex sheet, but recent studies suggest that vortex sheets develop curvature singularities in finite time, and that at the time of singularity formation, the vortex sheet changes from a weak solution to a measure-valued solution of Euler equations. Moreover, different regularizations may lead to different results, making the nature of the limit of vanishing viscosity a central concern. The different numerical methods are considered in order to obtain a direct check on the accuracy of the results, to make a direct comparison of the performance of these methods on shear flows and to identify areas for improvement in each method. Results of the numerical calculations will be used to study how viscous effects modify the tendency for vortex sheets to develop curvature singularities. Numerical results will also be used to help answer the open mathematical question: do different regularizations of the Euler equations converge to different limits as the regularization vanishes?
8903484首席研究员贝克将使用三种不同的方法--涡旋法、谱方法和有限差分方法研究不可压缩流体中高雷诺数剪切层的极限。经典的极限是涡旋层,但最近的研究表明,涡旋层在有限时间内发展出曲率奇异性,并且在奇异性形成时,涡旋层从欧拉方程的弱解转变为测量值解。此外,不同的正则化可能导致不同的结果,使得消失粘度极限的性质成为人们关注的中心问题。考虑了不同的数值方法,以便直接检查结果的准确性,直接比较这些方法在剪切流方面的性能,并找出每种方法需要改进的地方。数值计算的结果将被用来研究粘性效应如何改变涡片发展曲率奇异性的趋势。数值结果也将被用来帮助回答一个公开的数学问题:当正则化消失时,欧拉方程的不同正则化是否收敛到不同的极限?
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gregory Baker其他文献
Struggling with Uncertainty: The State of Global Agri-Food Sector in 2030
与不确定性作斗争:2030 年全球农产品行业状况
- DOI:
10.22004/ag.econ.188713 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Z. Lakner;Gregory Baker - 通讯作者:
Gregory Baker
Using the NBME® Comprehensive Subject Examinations to Assess Readiness for USMLE® Step 1 and Step 2 CK: a Comparison of US/Canadian and International Medical School Students
- DOI:
10.1007/s40670-017-0518-x - 发表时间:
2018-01-02 - 期刊:
- 影响因子:1.800
- 作者:
Carol A. Morrison;Laurel Smith;Linette Ross;Marie Maranki;Gregory Baker - 通讯作者:
Gregory Baker
Number Theory Meets Linguistics: Modelling Noun Pluralisation Across 1497 Languages Using 2-adic Metrics
数论与语言学的结合:使用 2-adic 度量对 1497 种语言的名词复数进行建模
- DOI:
10.48550/arxiv.2211.13124 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Gregory Baker;Diego Mollá Aliod - 通讯作者:
Diego Mollá Aliod
Implementing a New Score Scale for the Clinical Science Subject Examinations: Validity and Practical Considerations
实施新的临床科学科目考试评分标准:有效性和实际考虑
- DOI:
10.1007/s40670-019-00747-9 - 发表时间:
2019 - 期刊:
- 影响因子:1.7
- 作者:
Carol Morrison;L. Ross;Gregory Baker;Marie Maranki - 通讯作者:
Marie Maranki
Agribusiness Capstone Courses Design: Objectives and Strategies
农业综合企业顶点课程设计:目标和策略
- DOI:
- 发表时间:
2003 - 期刊:
- 影响因子:0
- 作者:
C. Hall;G. Fairchild;Gregory Baker;T. Taylor;K. Litzenberg - 通讯作者:
K. Litzenberg
Gregory Baker的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gregory Baker', 18)}}的其他基金
OEDG Track 1: Enhancing Diversity via Targeted Education and Outreach Through the East Tennessee Geosciences Program (ETGP)
OEDG 第 1 轨道:通过东田纳西州地球科学计划 (ETGP) 有针对性的教育和推广来增强多样性
- 批准号:
0704077 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Continuing grant
Collaboration in Mathematical Geosciences: Numerical Studies of Sea Surface Wave Height Statistics with Application to Sea Level Sensing Using Satellite Altimetry
数学地球科学合作:海面波高统计数值研究及其在卫星测高海平面传感中的应用
- 批准号:
0620885 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Standard Grant
US-Jordan Cooperative Research: Archaeological Geophysics in Humayma, Jordan
美国-约旦合作研究:约旦 Humayma 的考古地球物理学
- 批准号:
0243524 - 财政年份:2003
- 资助金额:
-- - 项目类别:
Standard Grant
ITR/AP(DMS): Numerical Studies of the Nonlinear Interaction Between Turbulent Air Flow and Sea Surface Waves, with Application to Ocean Surface Wave Turbulence
ITR/AP(DMS):湍流气流与海面波之间非线性相互作用的数值研究及其在海面波湍流中的应用
- 批准号:
0112759 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Standard Grant
Acquisition of Equipment for Investigating Coincident Seismic and GPR Imaging
购置用于研究同步地震和探地雷达成像的设备
- 批准号:
0002233 - 财政年份:2000
- 资助金额:
-- - 项目类别:
Standard Grant
PYI: Mathematical Sciences: Computational Studies of Vortex Flow
PYI:数学科学:涡流的计算研究
- 批准号:
8896192 - 财政年份:1988
- 资助金额:
-- - 项目类别:
Continuing grant
PYI: Mathematical Sciences: Computational Studies of Vortex Flow
PYI:数学科学:涡流的计算研究
- 批准号:
8352067 - 财政年份:1984
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: Stratified Contour Dynamics
数学科学:分层轮廓动力学
- 批准号:
8302549 - 财政年份:1983
- 资助金额:
-- - 项目类别:
Standard Grant
相似国自然基金
Cocycle Hopf 代数和 Reynolds 算子的研究
- 批准号:11861051
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Effect of Reynolds number on drag reduction: from near-wall cycle to large-scale motions.
雷诺数对减阻的影响:从近壁循环到大规模运动。
- 批准号:
2345157 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
TENSOR: Turbulent boundary layer and trailing Edge Noise Study Of flow past a porous surface at high Reynolds number
张量:高雷诺数下流过多孔表面的湍流边界层和后缘噪声研究
- 批准号:
EP/X032590/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Fellowship
Towards understanding transition mechanism and application to heat transfer enhancement of elasto-inertia turbulence at low Reynolds number based on vortex modulation
基于涡旋调制的低雷诺数弹惯性湍流传热强化的理解和应用
- 批准号:
23K19093 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Research Activity Start-up
Study on liquid water content fluctuation in high Reynolds number turbulence with large-scale mixing in convective clouds
对流云大尺度混合高雷诺数湍流中液态水含量波动研究
- 批准号:
23K03686 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Universal statistical laws in the small scales of high-Reynolds-number turbulence
小尺度高雷诺数湍流中的普遍统计定律
- 批准号:
23K03245 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Computational Aeroacoustic Prediction of Low Reynolds Number Airfoil Self-Noise
低雷诺数翼型自噪声的计算气动声学预测
- 批准号:
558763-2021 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Experimental and computational investigation of low Reynolds number Shock / Boundary Layer Interaction (SBLI)
低雷诺数冲击/边界层相互作用 (SBLI) 的实验和计算研究
- 批准号:
2908406 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Studentship
Lifting surfaces in low Reynolds number flows: bridging the gap between laboratory research and practice
低雷诺数流中的升力面:弥合实验室研究与实践之间的差距
- 批准号:
RGPIN-2022-03352 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Clarification of airfoil characteristics in compressible and critical Reynolds number flows
澄清可压缩和临界雷诺数流中的翼型特性
- 批准号:
22H01685 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Improving aerodynamic control strategies for low Reynolds number airfoils
改进低雷诺数翼型的气动控制策略
- 批准号:
RGPIN-2022-03071 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual