Mathematical Sciences: Potential Theory in n-space
数学科学:n 空间中的势理论
基本信息
- 批准号:8914039
- 负责人:
- 金额:$ 4.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1989
- 资助国家:美国
- 起止时间:1989-06-15 至 1990-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Mathematical research concerned with potential theory and the boundary properties of harmonic functions will be done. Much of the best work done in potential theory occurs in the two- dimensional setting where the connections with complex analysis of holomorphic functions can be exploited. In higher dimensions, "real variable" techniques have to be developed in conjunction with advances in partial differential equations. A typical gap in the lore is the lack of information on the roots of the gradient along the boundary. In two dimensions, this set has zero measure. Work will be done to clarify the situation in higher dimensions. A second thrust of this project will focus on the Oksendal problem for higher dimensions (and related issues). If one accepts the idea of a density (measure) on the boundary of a domain which produces harmonic extensions of continuous boundary functions, it has been shown that this measure is concentrated on a set of dimension 1 (precisely) in the two-dimensional case. The natural conjecture is that n-dimensional domains support harmonic measure on sets of dimension n-1, regardless of how complicated the boundary may be. The preceding effort requires careful analysis of the Green's function of a domain. Several questions have been raised concerning the geometry of the level sets of the Greens's function which will be addressed in this research. At the base of this work is the fundamental question of how Green's lines deform under continuous deformation of a domain. //
对势理论和调和函数的边界性质进行数学研究。势理论中许多最好的工作发生在二维环境中,在那里可以利用与全纯函数的复分析的联系。在更高的维度,“实变量”技术必须与偏微分方程的进展结合起来发展。该算法的一个典型缺陷是缺乏沿边界的梯度根的信息。在二维空间中,这个集合的测度为零。工作将被完成以澄清更高维度的情况。这个项目的第二个重点将集中在更高维度的Oksendal问题(以及相关问题)上。如果一个人接受在产生连续边界函数的调和扩展的区域边界上的密度(测度)的思想,那么已经证明,在二维情况下,这个测度集中在维数为1的集合上(精确地)。自然的猜想是n维域在n-1维的集合上支持调和测度,不管边界有多复杂。前面的工作需要仔细分析一个域的格林函数。本文对格林函数的水平集的几何性质提出了若干问题。这项工作的基础是格林线如何在一个域的连续变形下变形的基本问题。//
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas Wolff其他文献
Addendum to “decay of circular means of fourier transforms of measures”
- DOI:
10.1007/bf02786573 - 发表时间:
2002-12-01 - 期刊:
- 影响因子:0.900
- 作者:
Thomas Wolff - 通讯作者:
Thomas Wolff
MDS-191: Long-Term Efficacy and Safety of Luspatercept in Lower-Risk Myelodysplastic Syndromes (MDS): Phase 2 PACE-MDS Study
- DOI:
10.1016/s2152-2650(20)30974-5 - 发表时间:
2020-09-01 - 期刊:
- 影响因子:
- 作者:
Uwe Platzbecker;Philipp Kiewe;Ulrich Germing;Katharina Götze;Karin Mayer;Markus Radsak;Thomas Wolff;Joerg Chromik;Joseph Reynolds;Carolyn Barron;Xiaosha Zhang;Abderrahmane Laadem;Kenneth Attie;Aristoteles Giagounidis - 通讯作者:
Aristoteles Giagounidis
Complications of retroperitoneoscopic living donor nephrectomy: single center experience after 164 cases
- DOI:
10.1007/s00345-008-0296-6 - 发表时间:
2008-06-27 - 期刊:
- 影响因子:2.900
- 作者:
Alexander Bachmann;Stephen Wyler;Thomas Wolff;Lorenz Gürke;Jürg Steiger;Christoph Kettelhack;Thomas C. Gasser;Robin Ruszat - 通讯作者:
Robin Ruszat
C-arm angle measurement with accelerometer for brachytherapy: an accuracy study
用于近距离放射治疗的 C 形臂角度测量加速度计:精度研究
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:3
- 作者:
Thomas Wolff;A. Lasso;M. Eblenkamp;E. Wintermantel;G. Fichtinger - 通讯作者:
G. Fichtinger
Therapeutic Arteriogenesis by Fibrin Based Delivery Of Engineered VEGF and PDGF-BB Accelerates Diabetic Wound Healing in a Mouse Model
- DOI:
10.1016/j.ejvsvf.2020.07.016 - 发表时间:
2020-01-01 - 期刊:
- 影响因子:
- 作者:
Rosalinda D'Amico;Camilla Malucelli;Andrea Uccelli;Andrea Grosso;Nunzia Di Maggio;Lorenz Gürke;Thomas Wolff;Edin Mujagic;Priscilla S. Briquez;Jeffrey A. Hubbell;Roberto Gianni-Barrera;Andrea Banfi - 通讯作者:
Andrea Banfi
Thomas Wolff的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas Wolff', 18)}}的其他基金
EEES: Engaging Early Engineering Students to Expand Numbers of Degree Recipients
EEES:吸引早期工程专业学生以扩大学位获得者的数量
- 批准号:
0757020 - 财政年份:2008
- 资助金额:
$ 4.2万 - 项目类别:
Continuing Grant
CPATH CB: Computing and Undergraduate Engineering: A Collaborative Process to Align Computing Education with Engineering Workforce Needs
CPATH CB:计算和本科工程:使计算教育与工程劳动力需求保持一致的协作过程
- 批准号:
0722221 - 财政年份:2007
- 资助金额:
$ 4.2万 - 项目类别:
Standard Grant
Mathematical Sciences: Harmonic Analysis and the Laplace Equation
数学科学:调和分析和拉普拉斯方程
- 批准号:
9307872 - 财政年份:1993
- 资助金额:
$ 4.2万 - 项目类别:
Continuing Grant
Mathematical Sciences: Potential Theory in n-space
数学科学:n 空间中的势理论
- 批准号:
8703456 - 财政年份:1987
- 资助金额:
$ 4.2万 - 项目类别:
Continuing Grant
Mathematical Sciences Postdoctoral Research Fellowship
数学科学博士后研究奖学金
- 批准号:
8017153 - 财政年份:1980
- 资助金额:
$ 4.2万 - 项目类别:
Fellowship Award
相似国自然基金
Handbook of the Mathematics of the Arts and Sciences的中文翻译
- 批准号:12226504
- 批准年份:2022
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
SCIENCE CHINA: Earth Sciences
- 批准号:41224003
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21224005
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Information Sciences
- 批准号:61224002
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51224001
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21024806
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
- 批准号:81024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
- 批准号:41024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
Mathematical Sciences: Research on Representing Measures and Boundary Behavior in Potential Theory
数学科学:势论中表示测度和边界行为的研究
- 批准号:
9622454 - 财政年份:1996
- 资助金额:
$ 4.2万 - 项目类别:
Continuing Grant
Mathematical Sciences: Topology and Potential Theory of Complete Kahler Manifolds
数学科学:完全卡勒流形的拓扑和势论
- 批准号:
9626169 - 财政年份:1996
- 资助金额:
$ 4.2万 - 项目类别:
Standard Grant
Mathematical Sciences: Problems in Potential Theory
数学科学:势论问题
- 批准号:
9400687 - 财政年份:1994
- 资助金额:
$ 4.2万 - 项目类别:
Standard Grant
Mathematical Sciences: Regularity Problems in Nonlinear Potential Theory and Quasiregular Mappings
数学科学:非线性势论和拟正则映射中的正则问题
- 批准号:
9208296 - 财政年份:1992
- 资助金额:
$ 4.2万 - 项目类别:
Standard Grant
Mathematical Sciences: Applications of Nonstandard Analysis to Measure Theory, Potential Theory & Related Topics
数学科学:非标准分析在测度论、势论中的应用
- 批准号:
9201494 - 财政年份:1992
- 资助金额:
$ 4.2万 - 项目类别:
Standard Grant
Mathematical Sciences: The Pluri-Potential Theory and Its Application
数学科学:多势理论及其应用
- 批准号:
9101826 - 财政年份:1991
- 资助金额:
$ 4.2万 - 项目类别:
Standard Grant
Mathematical Sciences: Complex Analysis and Potential Theory
数学科学:复分析与势论
- 批准号:
9022938 - 财政年份:1991
- 资助金额:
$ 4.2万 - 项目类别:
Standard Grant
Mathematical Sciences: Potential Theoretical Methods in Approximation Theory
数学科学:近似论中潜在的理论方法
- 批准号:
9101380 - 财政年份:1991
- 资助金额:
$ 4.2万 - 项目类别:
Standard Grant
Mathematical Sciences: Special Functions and Orthogonal Expansions with Applications to Nonlinear Dynamics and Quantum Mechanics/Orthogonal Expansions and Potential Theory
数学科学:特殊函数和正交展开及其在非线性动力学和量子力学中的应用/正交展开和势论
- 批准号:
9002794 - 财政年份:1990
- 资助金额:
$ 4.2万 - 项目类别:
Standard Grant
Mathematical Sciences: Brownian Paths and Potential Theory
数学科学:布朗路径和势理论
- 批准号:
8901255 - 财政年份:1989
- 资助金额:
$ 4.2万 - 项目类别:
Standard Grant