Mathematical Sciences: Regularity Problems in Nonlinear Potential Theory and Quasiregular Mappings
数学科学:非线性势论和拟正则映射中的正则问题
基本信息
- 批准号:9208296
- 负责人:
- 金额:$ 4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1992
- 资助国家:美国
- 起止时间:1992-09-01 至 1995-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project continues mathematical research aimed at exploiting newly discovered relationships between the classical theory of quasiregular mappings and nonlinear elliptic systems of variational equations. Quasiregular mappings first appeared as a modest branch of complex function theory (quasiconformal mapping). The mappings are characterized geometrically by the property that they carry infinitesimal spheres into infinitesimal ellipsoids. In the second half of this century it was discovered that these mappings proved to be fundamental objects in geometry, such a Teichmuller theory, as well as to other areas of analysis. The present work focuses on how the Donaldson - Sullivan work on quasiconformal four-manifolds has led to new techniques applicable to questions in nonlinear partial differential equations. One of the first objectives of this work is to understand what, if any, distinctions arise in the study of quasiregular mappings defined on even and odd dimensional spaces. Some of the deeper new discoveries are only known in the even dimensional case. Arguments based on Hodge decompositions and Cacciappoli type inequalities may yield additional information about odd dimensions. A second application of quasiregular mappings relates to vector-valued analogues of singular integral transformations consisting of matrices whose elements are Riesz transforms. It is believed that the p-norms of these operators do not depend on the dimension of the underlying space. Although it may be impossible to achieve exact values for the norms, work will be done in showing that the bounds are dimension-free. To achieve this, a new technique called the complex method of rotation has been introduced which applies to a broad class of integral operators in estimating their mapping norms. Finally work of a more geometric nature will continue on the questions of the maximum dimension of removable sets for quasiregular mapping and how Hausdorff dimension is distorted under such maps.
该项目继续进行数学研究,旨在 利用新发现的古典 拟正则映射理论与非线性椭圆型方程组 变分方程 拟正则映射最初是作为 复变函数论的一个小分支(拟共形 映射)。 映射的几何特征是: 性质,他们进行无穷小领域到无穷小 椭圆体 在本世纪的后半叶, 这些映射被证明是几何学中的基本对象, 这样的Teichmuller理论,以及其他领域的分析。 本工作的重点是如何唐纳森-沙利文 在拟共形四维流形上的工作导致了新的技术 适用于非线性偏微分问题 方程 这项工作的首要目标之一是 了解什么,如果有的话,区别出现在研究 定义在奇、偶维空间上的拟正则映射。 一些更深层次的新发现只有在晚上才知道 维度案例 基于Hodge分解和 Cacciappoli型不等式可以产生额外的信息 奇怪的维度 拟正则映射的第二个应用涉及: 奇异积分变换的向量值模拟 由其元素是Riesz变换的矩阵组成。 它 我们认为这些算子的p范数不依赖于 底层空间的维度。尽管它可能是 不可能达到规范的精确值,工作将 证明了边界是无量纲的。 实现 这是一种新的技术,称为复杂的旋转方法, 它适用于广泛的一类积分 算子估计其映射范数。 最后,更多的几何性质的工作将继续在 可去集的最大维数问题 拟正则映射与Hausdorff维数的畸变 在这样的地图下。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tadeusz Iwaniec其他文献
${\cal H}^1$ -estimates of Jacobians by subdeterminants
- DOI:
10.1007/s00208-002-0341-5 - 发表时间:
2002-10-01 - 期刊:
- 影响因子:1.400
- 作者:
Tadeusz Iwaniec;Jani Onninen - 通讯作者:
Jani Onninen
Div-curl fields of finite distortion
- DOI:
10.1016/s0764-4442(98)80160-2 - 发表时间:
1998-10-01 - 期刊:
- 影响因子:
- 作者:
Tadeusz Iwaniec;Carlo Sbordone - 通讯作者:
Carlo Sbordone
Dynamics of Quasiconformal Fields
- DOI:
10.1007/s10884-010-9203-0 - 发表时间:
2010-12-24 - 期刊:
- 影响因子:1.300
- 作者:
Tadeusz Iwaniec;Leonid V. Kovalev;Jani Onninen - 通讯作者:
Jani Onninen
On Minimisers of $$L^p$$ -mean Distortion
- DOI:
10.1007/s40315-014-0063-1 - 发表时间:
2014-04-01 - 期刊:
- 影响因子:0.700
- 作者:
Tadeusz Iwaniec;Gaven Martin;Jani Onninen - 通讯作者:
Jani Onninen
Tadeusz Iwaniec的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tadeusz Iwaniec', 18)}}的其他基金
Variational approach to Geometric Function Theorem, Nonlinear PDEs and Hyperelasticy
几何函数定理、非线性偏微分方程和超弹性的变分法
- 批准号:
1802107 - 财政年份:2018
- 资助金额:
$ 4万 - 项目类别:
Continuing Grant
Conference: Harmonic Analysis, Complex Analysis, Spectral Theory and All That
会议:调和分析、复分析、谱理论等等
- 批准号:
1600705 - 财政年份:2016
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
Sobolev Mappings and Energy-Integrals in Mathematical Models of Nonlinear Elasticity
非线性弹性数学模型中的索博列夫映射和能量积分
- 批准号:
1301558 - 财政年份:2013
- 资助金额:
$ 4万 - 项目类别:
Continuing Grant
Extremal Problems in Quasiconformal Geometry and Nonlinear PDEs, an Invitation to n- Harmonic Hyperelasticity
拟共形几何和非线性偏微分方程中的极值问题,n 调和超弹性的邀请
- 批准号:
0800416 - 财政年份:2008
- 资助金额:
$ 4万 - 项目类别:
Continuing Grant
Geometric Analysis of Deformations of Finite Distortiion via Nonlinear PDEs and Null Lagrangians
通过非线性偏微分方程和零拉格朗日量对有限畸变变形进行几何分析
- 批准号:
0301582 - 财政年份:2003
- 资助金额:
$ 4万 - 项目类别:
Continuing Grant
Collaborative Research: FRG: Geometric Function Theory: From Complex Functions to Quasiconformal Geometry and Nonlinear Analysis
合作研究:FRG:几何函数理论:从复杂函数到拟共形几何和非线性分析
- 批准号:
0244297 - 财政年份:2003
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
Foundation of the Geometric Function Theory in R^n: The Governing differential Forms, Variational Integrals and Nonlinear Elasticity
R^n 中的几何函数理论基础:控制微分形式、变分积分和非线性弹性
- 批准号:
0070807 - 财政年份:2000
- 资助金额:
$ 4万 - 项目类别:
Continuing Grant
Quasiconformal Mappings, Harmonic Analysis and Nonlinear Elasticity from the Prospective of PDEs
偏微分方程视角下的拟共形映射、调和分析和非线性弹性
- 批准号:
9706611 - 财政年份:1997
- 资助金额:
$ 4万 - 项目类别:
Continuing Grant
Mathematical Sciences: Quasiconformal Analysis and Harmonic Integrals with Applications to Nonlinear Elasticity
数学科学:拟共形分析和调和积分及其在非线性弹性中的应用
- 批准号:
9401104 - 财政年份:1994
- 资助金额:
$ 4万 - 项目类别:
Continuing Grant
Mathematical Sciences: Regularity Problems for Variational Integrals and Quasiregular Mappings
数学科学:变分积分和拟正则映射的正则问题
- 批准号:
9007946 - 财政年份:1990
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
相似国自然基金
Handbook of the Mathematics of the Arts and Sciences的中文翻译
- 批准号:12226504
- 批准年份:2022
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
SCIENCE CHINA: Earth Sciences
- 批准号:41224003
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21224005
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Information Sciences
- 批准号:61224002
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51224001
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21024806
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
- 批准号:81024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
- 批准号:41024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
NSF/CBMS Regional Conference in the Mathematical Sciences -- Topological and algebraic regularity properties of nuclear C*-algebras
NSF/CBMS 数学科学区域会议 -- 核 C* 代数的拓扑和代数正则性性质
- 批准号:
1138022 - 财政年份:2011
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
Mathematical Sciences: Regularity and Oscillations in Mathematical Theory of an Ideal Incompressible Fluid
数学科学:理想不可压缩流体数学理论中的规律性和振荡
- 批准号:
9531769 - 财政年份:1996
- 资助金额:
$ 4万 - 项目类别:
Continuing Grant
Mathematical Sciences: Absolute Continuity of Parabolic Measure and Regularity of PDE's
数学科学:抛物线测度的绝对连续性和偏微分方程的正则性
- 批准号:
9531642 - 财政年份:1996
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
Mathematical Sciences: Regularity and Singularity in Geometric Variational and Flow Problems
数学科学:几何变分和流问题中的正则性和奇异性
- 批准号:
9504456 - 财政年份:1995
- 资助金额:
$ 4万 - 项目类别:
Continuing Grant
Mathematical Sciences: Regularity of Solutions to Schrodinger Equations
数学科学:薛定谔方程解的正则性
- 批准号:
9500917 - 财政年份:1995
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
Mathematical Sciences: "The Wave Map Program: Toward a Theory of Regularity and Break-down in Classical Nonlinear Fields"
数学科学:“波图程序:走向经典非线性场中的规律性和分解理论”
- 批准号:
9504919 - 财政年份:1995
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
Mathematical Sciences: Regularity Properties of Nonlinear Wave Equations
数学科学:非线性波动方程的正则性质
- 批准号:
9400258 - 财政年份:1994
- 资助金额:
$ 4万 - 项目类别:
Continuing Grant
Mathematical Sciences: Size and Regularity Estimates for Solutions to Hyperbolic Equations
数学科学:双曲方程解的大小和规律性估计
- 批准号:
9401819 - 财政年份:1994
- 资助金额:
$ 4万 - 项目类别:
Continuing Grant
Mathematical Sciences: Regularity for Partial Differential Equations
数学科学:偏微分方程的正则性
- 批准号:
9401921 - 财政年份:1994
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
Mathematical Sciences: Unique Continuation, Regularity of Solutions to Linear and Nonlinear Equations of Nonelliptic Type, Symmetry for PDE's
数学科学:非椭圆型线性和非线性方程解的唯一连续性、正则性、偏微分方程的对称性
- 批准号:
9404358 - 财政年份:1994
- 资助金额:
$ 4万 - 项目类别:
Continuing Grant