Mathematical Sciences: Representations of Finite Reductive Groups: A Characteristic Free Approach Through q-Deformations

数学科学:有限还原群的表示:通过 q 变形的特征自由方法

基本信息

  • 批准号:
    9002606
  • 负责人:
  • 金额:
    $ 6.4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1990
  • 资助国家:
    美国
  • 起止时间:
    1990-06-01 至 1992-11-30
  • 项目状态:
    已结题

项目摘要

This project is concerned with the representation theory of general linear groups and their quantizations. The principal investigator will investigate the Hecke algebras associated with Weyl groups in an effort to extend the work on q-Schur algebras and apply it to other groups of Lie type. This research is in the general area of the representation theory of finite classical groups. One of the main applications of group theory to other mathematical and scientific fields is in representation theory, and finite classical groups are a primary source of finite simple groups.
本项目涉及的是 一般线性群及其量子化校长 研究人员将研究与以下相关的Hecke代数: Weyl群在q-Schur代数上的推广 并将其应用于其他Lie类型的群。 本研究是在一般领域的代表性 有限经典群理论主要应用之一 群论对其他数学和科学领域的影响 表示理论,有限经典群是一个主要的 有限单群的源。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Richard Dipper其他文献

Iwahori-Hecke algebras acting on tensor space by <em>q</em>-deformed letter permutations and <em>q</em>-partition algebras
  • DOI:
    10.1016/j.jalgebra.2024.05.050
  • 发表时间:
    2024-11-15
  • 期刊:
  • 影响因子:
  • 作者:
    Geetha Thangavelu;Richard Dipper
  • 通讯作者:
    Richard Dipper

Richard Dipper的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Richard Dipper', 18)}}的其他基金

Mathematical Sciences: Representations of Classical Groups and Hecke Algebras
数学科学:经典群和赫克代数的表示
  • 批准号:
    8802290
  • 财政年份:
    1988
  • 资助金额:
    $ 6.4万
  • 项目类别:
    Continuing Grant

相似国自然基金

Handbook of the Mathematics of the Arts and Sciences的中文翻译
  • 批准号:
    12226504
  • 批准年份:
    2022
  • 资助金额:
    20.0 万元
  • 项目类别:
    数学天元基金项目
SCIENCE CHINA: Earth Sciences
  • 批准号:
    41224003
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Environmental Sciences
  • 批准号:
    21224005
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Information Sciences
  • 批准号:
    61224002
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51224001
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
  • 批准号:
    81024803
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Environmental Sciences
  • 批准号:
    21024806
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
  • 批准号:
    41024801
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51024803
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

NSF/CBMS Regional Conference in the Mathematical Sciences - Unitary Representations of Reductive Groups
NSF/CBMS 数学科学区域会议 - 还原群的酉表示
  • 批准号:
    1137423
  • 财政年份:
    2012
  • 资助金额:
    $ 6.4万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Arithmetic Models for Shimura Varieties, L-Functions and Cohomology Groups as Integral Representations
数学科学:Shimura 簇、L 函数和上同调群的算术模型作为积分表示
  • 批准号:
    9996393
  • 财政年份:
    1999
  • 资助金额:
    $ 6.4万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Sums of L-functions, the Metaplectic Group, and Non-Generic Representations
数学科学:L 函数之和、元波群和非泛型表示
  • 批准号:
    9896186
  • 财政年份:
    1998
  • 资助金额:
    $ 6.4万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Unipotent Representations of p-Adic Groups
数学科学:p-Adic 群的单能表示
  • 批准号:
    9896279
  • 财政年份:
    1998
  • 资助金额:
    $ 6.4万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Unitary Representations and Zuckerman Modules
数学科学:酉表示和祖克曼模块
  • 批准号:
    9706922
  • 财政年份:
    1997
  • 资助金额:
    $ 6.4万
  • 项目类别:
    Continuing Grant
Mathematical Sciences/GIG: Lie Groups, Algebras and Their Representations
数学科学/GIG:李群、代数及其表示
  • 批准号:
    9709820
  • 财政年份:
    1997
  • 资助金额:
    $ 6.4万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Representations and Cohomology of Groups
数学科学:群的表示和上同调
  • 批准号:
    9700416
  • 财政年份:
    1997
  • 资助金额:
    $ 6.4万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Microlocal Character Theory for Representations of Classical Lie Groups
数学科学:经典李群表示的微局部特征理论
  • 批准号:
    9622610
  • 财政年份:
    1996
  • 资助金额:
    $ 6.4万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Unipotent Representations of p-Adic Groups
数学科学:p-Adic 群的单能表示
  • 批准号:
    9622343
  • 财政年份:
    1996
  • 资助金额:
    $ 6.4万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Sums of L-functions, the Metaplectic Group, and Non-Generic Representations
数学科学:L 函数之和、元波群和非泛型表示
  • 批准号:
    9531957
  • 财政年份:
    1996
  • 资助金额:
    $ 6.4万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了