Mathematical Sciences: Nonlinear Partial Differential Equations with Applications to Geometric Analysis and Continuum Mechanics

数学科学:非线性偏微分方程及其在几何分析和连续介质力学中的应用

基本信息

  • 批准号:
    9100581
  • 负责人:
  • 金额:
    $ 4.56万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1991
  • 资助国家:
    美国
  • 起止时间:
    1991-09-01 至 1993-08-31
  • 项目状态:
    已结题

项目摘要

This project will support investigation of three problems concerning elliptic partial differential equations. The first problem is to obtain sharp estimates and exact expressions for eigenvalues and bifurcation points. The second problem is to establish existence theorems for smooth hypersurfaces with prescribed mean curvature in general Riemann spaces, and the third problem is to establish existence theorems for hypersurfaces with prescribed elementary symmetric function of the principal normal curvatures. These problems come from questions in Continuum Mechanics and Differential Geometry. Results from this project have potential applications in areas such as the development of new materials and the computation of stresses in static structures.
该项目将支持对三个问题的调查 椭圆型偏微分方程 第一 问题是要获得尖锐的估计和精确的表达式, 特征值和分歧点。 第二个问题是, 光滑超曲面存在性定理 规定的平均曲率一般黎曼空间,和 第三个问题是建立存在定理, 具有指定初等对称函数的超曲面 主法线曲率。 这些问题来源于连续介质力学中的问题 微分几何 该项目的成果有 潜在的应用领域,如开发新的 材料和静态结构中的应力计算。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ilya Bakelman其他文献

Ilya Bakelman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ilya Bakelman', 18)}}的其他基金

Mathematical Sciences: Boundary Value Problems for Partial Differential Equations
数学科学:偏微分方程的边值问题
  • 批准号:
    8617588
  • 财政年份:
    1987
  • 资助金额:
    $ 4.56万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Boundary Value Problems for Partial Differential Equations
数学科学:偏微分方程的边值问题
  • 批准号:
    8420850
  • 财政年份:
    1985
  • 资助金额:
    $ 4.56万
  • 项目类别:
    Continuing Grant
Boundary Value Problems For General N-Dimensional Elliptic Monge-Ampere and Quasilinear Equations (Mathematical Sciences)
一般 N 维椭圆蒙日安培和拟线性方程的边值问题(数学科学)
  • 批准号:
    8201106
  • 财政年份:
    1982
  • 资助金额:
    $ 4.56万
  • 项目类别:
    Standard Grant
Boundary Value Problems For General N-Dimensional Elliptic Monge-Ampere Equations
一般N维椭圆蒙日-安培方程的边值问题
  • 批准号:
    8002564
  • 财政年份:
    1980
  • 资助金额:
    $ 4.56万
  • 项目类别:
    Standard Grant

相似国自然基金

Handbook of the Mathematics of the Arts and Sciences的中文翻译
  • 批准号:
    12226504
  • 批准年份:
    2022
  • 资助金额:
    20.0 万元
  • 项目类别:
    数学天元基金项目
SCIENCE CHINA: Earth Sciences
  • 批准号:
    41224003
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Environmental Sciences
  • 批准号:
    21224005
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Information Sciences
  • 批准号:
    61224002
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51224001
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Environmental Sciences
  • 批准号:
    21024806
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
  • 批准号:
    81024803
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
  • 批准号:
    41024801
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51024803
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

NSF/CBMS Regional Conference in the Mathematical Sciences - The Global Behavior of Solutions to Critical Nonlinear Wave Equations
NSF/CBMS 数学科学区域会议 - 临界非线性波动方程解的全局行为
  • 批准号:
    1240744
  • 财政年份:
    2012
  • 资助金额:
    $ 4.56万
  • 项目类别:
    Standard Grant
CBMS Regional Conference in the Mathematical Sciences - Nonlinear Water Waves with Applications to Wave-Current Interactions and Tsunamis - Spring 2010
CBMS 数学科学区域会议 - 非线性水波及其在波流相互作用和海啸中的应用 - 2010 年春季
  • 批准号:
    0938266
  • 财政年份:
    2010
  • 资助金额:
    $ 4.56万
  • 项目类别:
    Standard Grant
CBMS Regional Conference in the Mathematical Sciences - Numerical Methods for Nonlinear Elliptic Equations - Spring 2007
CBMS 数学科学区域会议 - 非线性椭圆方程的数值方法 - 2007 年春季
  • 批准号:
    0630571
  • 财政年份:
    2007
  • 资助金额:
    $ 4.56万
  • 项目类别:
    Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences: Nonlinear Dispersive and Wave Equations
NSF/CBMS 数学科学区域会议:非线性色散和波动方程
  • 批准号:
    0440945
  • 财政年份:
    2005
  • 资助金额:
    $ 4.56万
  • 项目类别:
    Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences: Fully Nonlinear Equations in Geometry
NSF/CBMS 数学科学区域会议:几何中的完全非线性方程
  • 批准号:
    0225735
  • 财政年份:
    2003
  • 资助金额:
    $ 4.56万
  • 项目类别:
    Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences - Mathematical Methods in Nonlinear Wave Propagation - May 13-17, 2002
NSF/CBMS 数学科学区域会议 - 非线性波传播的数学方法 - 2002 年 5 月 13-17 日
  • 批准号:
    0122208
  • 财政年份:
    2002
  • 资助金额:
    $ 4.56万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Nonlinear Partial Differential Equations & Their Applications to Evolving Surfaces, Phase Transitions & Stochastic Control
数学科学:非线性偏微分方程
  • 批准号:
    9817525
  • 财政年份:
    1998
  • 资助金额:
    $ 4.56万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Nonlinear Elliptic Equations in Differential Geometry
数学科学:微分几何中的非线性椭圆方程
  • 批准号:
    9704861
  • 财政年份:
    1997
  • 资助金额:
    $ 4.56万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Interface Dynamics and Renormalization Methods for Nonlinear Systems of Equations
数学科学:非线性方程组的界面动力学和重整化方法
  • 批准号:
    9703530
  • 财政年份:
    1997
  • 资助金额:
    $ 4.56万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Chaos-Integrability Transition in Nonlinear Dynamical Systems: Exponental Asymptotics Approach
数学科学:非线性动力系统中的混沌可积性转变:指数渐近方法
  • 批准号:
    9796164
  • 财政年份:
    1997
  • 资助金额:
    $ 4.56万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了