Mathematical Sciences: Boundary Value Problems for Partial Differential Equations

数学科学:偏微分方程的边值问题

基本信息

  • 批准号:
    8420850
  • 负责人:
  • 金额:
    $ 3.1万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1985
  • 资助国家:
    美国
  • 起止时间:
    1985-09-01 至 1988-02-29
  • 项目状态:
    已结题

项目摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ilya Bakelman其他文献

Ilya Bakelman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ilya Bakelman', 18)}}的其他基金

Mathematical Sciences: Nonlinear Partial Differential Equations with Applications to Geometric Analysis and Continuum Mechanics
数学科学:非线性偏微分方程及其在几何分析和连续介质力学中的应用
  • 批准号:
    9100581
  • 财政年份:
    1991
  • 资助金额:
    $ 3.1万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Boundary Value Problems for Partial Differential Equations
数学科学:偏微分方程的边值问题
  • 批准号:
    8617588
  • 财政年份:
    1987
  • 资助金额:
    $ 3.1万
  • 项目类别:
    Standard Grant
Boundary Value Problems For General N-Dimensional Elliptic Monge-Ampere and Quasilinear Equations (Mathematical Sciences)
一般 N 维椭圆蒙日安培和拟线性方程的边值问题(数学科学)
  • 批准号:
    8201106
  • 财政年份:
    1982
  • 资助金额:
    $ 3.1万
  • 项目类别:
    Standard Grant
Boundary Value Problems For General N-Dimensional Elliptic Monge-Ampere Equations
一般N维椭圆蒙日-安培方程的边值问题
  • 批准号:
    8002564
  • 财政年份:
    1980
  • 资助金额:
    $ 3.1万
  • 项目类别:
    Standard Grant

相似国自然基金

Handbook of the Mathematics of the Arts and Sciences的中文翻译
  • 批准号:
    12226504
  • 批准年份:
    2022
  • 资助金额:
    20.0 万元
  • 项目类别:
    数学天元基金项目
SCIENCE CHINA: Earth Sciences
  • 批准号:
    41224003
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Environmental Sciences
  • 批准号:
    21224005
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Information Sciences
  • 批准号:
    61224002
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51224001
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Environmental Sciences
  • 批准号:
    21024806
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
  • 批准号:
    81024803
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
  • 批准号:
    41024801
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51024803
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

NSF/CBMS Regional Conference in the Mathematical Sciences - New Perspectives for Boundary Value Problems and Their Asymptotics; May 16-20, 2005; Edinburg, TX
NSF/CBMS 数学科学区域会议 - 边值问题及其渐近问题的新视角;
  • 批准号:
    0433445
  • 财政年份:
    2005
  • 资助金额:
    $ 3.1万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Higher Index for Coverings of Manifolds with Boundary
数学科学:有边界流形覆盖的更高指数
  • 批准号:
    9706858
  • 财政年份:
    1997
  • 资助金额:
    $ 3.1万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Partial Differential Equations: Free Boundary Problems
数学科学:偏微分方程:自由边界问题
  • 批准号:
    9703842
  • 财政年份:
    1997
  • 资助金额:
    $ 3.1万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Real Variable Techniques in the Approximation of Functions and Boundary Value Problems in Nonsmooth Domains
数学科学:非光滑域中函数逼近和边值问题的实变量技术
  • 批准号:
    9623251
  • 财政年份:
    1996
  • 资助金额:
    $ 3.1万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Research on Representing Measures and Boundary Behavior in Potential Theory
数学科学:势论中表示测度和边界行为的研究
  • 批准号:
    9622454
  • 财政年份:
    1996
  • 资助金额:
    $ 3.1万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Non-Reflecting Boundary Conditions Based on Far Field Expansions
数学科学:基于远场展开的非反射边界条件
  • 批准号:
    9530937
  • 财政年份:
    1996
  • 资助金额:
    $ 3.1万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Asymptotic Estimates for Boundary- Value Problems in Linear and Nonlinear Continuum Mechanics
数学科学:线性和非线性连续介质力学中边值问题的渐近估计
  • 批准号:
    9622748
  • 财政年份:
    1996
  • 资助金额:
    $ 3.1万
  • 项目类别:
    Standard Grant
Mathematical Sciences: "Wave and Heat Processes in Fractal Boundary Layers".
数学科学:“分形边界层中的波和热过程”。
  • 批准号:
    9623727
  • 财政年份:
    1996
  • 资助金额:
    $ 3.1万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Real Variable Techniques in the Approximation of Functions and Boundary Value Problems in Nonsmooth Domains
数学科学:非光滑域中函数逼近和边值问题的实变量技术
  • 批准号:
    9696267
  • 财政年份:
    1996
  • 资助金额:
    $ 3.1万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Boundary Control Problems for Linear and Non-Linear Partial Differential Equations and Riccati Equations
数学科学:线性和非线性偏微分方程和 Riccati 方程的边界控制问题
  • 批准号:
    9504822
  • 财政年份:
    1995
  • 资助金额:
    $ 3.1万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了