A Reformulation-Linearization Technique with Application to Production, Location, Distribution, and Design Problems
应用于生产、定位、分销和设计问题的重构线性化技术
基本信息
- 批准号:9121419
- 负责人:
- 金额:$ 15.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1992
- 资助国家:美国
- 起止时间:1992-09-15 至 1996-02-29
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project is concerned with the design of a new Reformulation-Linearization Technique (RLT) and the development of its application to various classes of problems arising in production, location-allocation, economics, and various engineering and systems design and operational contexts. At the heart of this methodology is a procedure developed under a previous National Science Foundation project for generating tight, higher dimensional, linear programming representations for linear and polynomial zero-one mixed-integer programming problems. The basic RLT procedure possesses a considerable degree flexibility that can be exploited to develop effective algorithmic variants. Various transformations and implementation schemes will be investigated in order to enhance the capability in solving both discrete and continuous nonconvex decision problems. The utility of the RLT scheme in generating facets and tight valid inequalities for important discrete classes of problems will also be explored. This will benefit other algorithms for mixed-integer zero-one problems. The methodology developed will be specialized to solve indefinite and concave quadratic programs, linear complementarily problems, location-allocation problems, and fixed-charge problems that arise in the different aforementioned applications.
该项目涉及一种新的重新配方线性化技术(RLT)的设计,并将其应用于生产、位置分配、经济、各种工程和系统设计和操作环境中出现的各种问题。该方法的核心是在之前的国家科学基金会项目下开发的一个程序,该项目用于生成线性和多项式零- 1混合整数规划问题的紧密、高维、线性规划表示。基本的RLT程序具有相当程度的灵活性,可用于开发有效的算法变体。为了提高求解离散和连续非凸决策问题的能力,将研究各种转换和实现方案。对于重要的离散类问题,RLT方案在生成切面和紧有效不等式方面的效用也将被探讨。这将有利于其他混合整数0 - 1问题的算法。所开发的方法将专门用于解决上述不同应用中出现的不定和凹二次规划、线性互补问题、位置分配问题和固定费用问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hanif Sherali其他文献
Hanif Sherali的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hanif Sherali', 18)}}的其他基金
Collaborative Research: Reformulation-Linearization Technique for Discrete and Continuous Nonconvex Optimization with Applications
合作研究:离散和连续非凸优化的重构线性化技术及其应用
- 批准号:
0969169 - 财政年份:2010
- 资助金额:
$ 15.85万 - 项目类别:
Standard Grant
Integrated Operations Planning Models and Algorithms for the Airline Industry
航空业综合运营规划模型和算法
- 批准号:
0754236 - 财政年份:2008
- 资助金额:
$ 15.85万 - 项目类别:
Standard Grant
Enhancing the Solvability of Discrete and Continuous Nonconvex Programs with Applications to Production, Design, and Operational Problems
通过在生产、设计和操作问题中的应用来增强离散和连续非凸程序的可解性
- 批准号:
0552676 - 财政年份:2006
- 资助金额:
$ 15.85万 - 项目类别:
Standard Grant
International Conference on Complementarity, Duality, and Global Optimization; August 15-17, 2005; Virginia Tech - Blacksburg, VA
互补性、二元性和全局优化国际会议;
- 批准号:
0455807 - 财政年份:2005
- 资助金额:
$ 15.85万 - 项目类别:
Standard Grant
GOALI: Demand Driven Fleet Management Analysis, Models, and Algorithms for the Airline Industry
GOALI:航空业需求驱动的机队管理分析、模型和算法
- 批准号:
0245643 - 财政年份:2003
- 资助金额:
$ 15.85万 - 项目类别:
Standard Grant
A Unifying Approach for Discrete and Continuous Nonconvex Optimization with Applications to Operational and Design Problems
离散和连续非凸优化的统一方法及其在操作和设计问题中的应用
- 批准号:
0094462 - 财政年份:2001
- 资助金额:
$ 15.85万 - 项目类别:
Continuing Grant
Exploratory Research on Engineering the Transport Industries (ETI): Air-Traffic Management and Control Issues in the Terminal Area and in the Enroute National Airspace
运输工业工程 (ETI) 的探索性研究:航站区和航路国家空域的空中交通管理和控制问题
- 批准号:
0085640 - 财政年份:2000
- 资助金额:
$ 15.85万 - 项目类别:
Standard Grant
Discrete and Continuous Nonconvex Optimization with Applications to Production, Distribution, and Design Problems
离散和连续非凸优化及其在生产、分销和设计问题中的应用
- 批准号:
9812047 - 财政年份:1998
- 资助金额:
$ 15.85万 - 项目类别:
Standard Grant
Tight Polyhedral Relaxations for Discrete and Continuous Nonconvex Problems with Applications to Production, Distribution, and Design Problems
离散和连续非凸问题的紧多面体松弛及其在生产、分配和设计问题中的应用
- 批准号:
9521398 - 财政年份:1995
- 资助金额:
$ 15.85万 - 项目类别:
Continuing Grant
A New Reformulation Technique for Tightening Relaxations of Some Combinatorial Optimization Problems with Application tothe General Linear Complementarity Problem
一些组合优化问题紧松弛的新重构技术及其在一般线性互补问题中的应用
- 批准号:
8807090 - 财政年份:1989
- 资助金额:
$ 15.85万 - 项目类别:
Continuing Grant
相似海外基金
ML-based DPD for Wideband PA Linearization in mMIMO systems
基于 ML 的 DPD,用于 mMIMO 系统中的宽带 PA 线性化
- 批准号:
573751-2022 - 财政年份:2022
- 资助金额:
$ 15.85万 - 项目类别:
University Undergraduate Student Research Awards
Linearization of Nonlinear Conditions in Autonomous Vehicle Control Systems
自动车辆控制系统中非线性条件的线性化
- 批准号:
RGPIN-2020-06759 - 财政年份:2022
- 资助金额:
$ 15.85万 - 项目类别:
Discovery Grants Program - Individual
Solving and Analyzing Nonlinear Multibody Dynamic Engineering Systems with a Piecewise Linearization Approach
使用分段线性化方法求解和分析非线性多体动态工程系统
- 批准号:
RGPIN-2020-06926 - 财政年份:2022
- 资助金额:
$ 15.85万 - 项目类别:
Discovery Grants Program - Individual
Deep Neural Network (DNN)-based Linearization for Power Amplifiers
基于深度神经网络 (DNN) 的功率放大器线性化
- 批准号:
562387-2021 - 财政年份:2021
- 资助金额:
$ 15.85万 - 项目类别:
University Undergraduate Student Research Awards
Linearization of Nonlinear Conditions in Autonomous Vehicle Control Systems
自动车辆控制系统中非线性条件的线性化
- 批准号:
RGPIN-2020-06759 - 财政年份:2021
- 资助金额:
$ 15.85万 - 项目类别:
Discovery Grants Program - Individual
Solving and Analyzing Nonlinear Multibody Dynamic Engineering Systems with a Piecewise Linearization Approach
使用分段线性化方法求解和分析非线性多体动态工程系统
- 批准号:
RGPIN-2020-06926 - 财政年份:2021
- 资助金额:
$ 15.85万 - 项目类别:
Discovery Grants Program - Individual
Solving and Analyzing Nonlinear Multibody Dynamic Engineering Systems with a Piecewise Linearization Approach
使用分段线性化方法求解和分析非线性多体动态工程系统
- 批准号:
RGPIN-2020-06926 - 财政年份:2020
- 资助金额:
$ 15.85万 - 项目类别:
Discovery Grants Program - Individual
Linearization of Nonlinear Conditions in Autonomous Vehicle Control Systems
自动车辆控制系统中非线性条件的线性化
- 批准号:
RGPIN-2020-06759 - 财政年份:2020
- 资助金额:
$ 15.85万 - 项目类别:
Discovery Grants Program - Individual
Accurate Linearization and Control of Non-linear Physical Systems using Increased Variables
使用增加的变量对非线性物理系统进行精确线性化和控制
- 批准号:
2021625 - 财政年份:2020
- 资助金额:
$ 15.85万 - 项目类别:
Standard Grant
Regulation of collagen linearization during cancer progression and metastasis
癌症进展和转移过程中胶原蛋白线性化的调节
- 批准号:
10310950 - 财政年份:2020
- 资助金额:
$ 15.85万 - 项目类别: