Enhancing the Solvability of Discrete and Continuous Nonconvex Programs with Applications to Production, Design, and Operational Problems

通过在生产、设计和操作问题中的应用来增强离散和连续非凸程序的可解性

基本信息

项目摘要

This project deals with theoretical and algorithmic developments, as well as computational implementation issues related to the Reformulation-Linearization/Convexification Technique (RLT). In the context of 0-1 and general discrete mixed-integer programs, a dynamic Lagrangian relaxation strategy will be developed to automatically generate judicious RLT-enhanced reformulations. Specializations for minimax problems will also be investigated. Extensions to general integer or discrete programs, including the development of a new class of Chvatal-Gomory Tier Cuts, as well as extensions to convex-constrained problems will be studied. In the arena of continuous nonconvex factorable programming problems, various RLT constraint generation and filtering strategies for constructing tight manageable relaxations will be developed, including a new class of semidefinite cuts for enhancing the model representation. Applications arising in national airspace planning and air-traffic management, production scheduling, engineering design under uncertainty, and wireless communication network design will be explored. The study of these applications will encompass polyhedral analyses of certain combinatorial optimization problems such as the generalized vertex packing problem and the asymmetric traveling salesman problem.The results of this study will advance concepts and offer insights into problem structures and modeling strategies, as well as provide a construct for generating tight relaxations leading to effective procedures for solving the above types of problems. The contributions will advance optimization theory as well as impact the aforementioned application domains. In particular, the air-traffic management application proposed for study will be investigated in cooperation with the Federal Aviation Administration (FAA), and will benefit society by reducing delays and related airline costs, as well as by enhancing the safety and operational efficiency of the national airspace. Students from across the College of Engineering will be involved in this research effort, and the technology generated by this project will be disseminated via public domain software.
该项目涉及理论和算法的发展,以及与重构线性化/凸化技术(RLT)相关的计算实现问题。 在0-1和一般的离散混合整数规划的背景下,动态拉格朗日松弛策略将自动生成明智的RLT增强的重新配方。专业化的极小极大问题也将进行调查。扩展到一般整数或离散程序,包括开发一类新的Chvatal-Gomory层切割,以及扩展到凸约束问题将进行研究。 在竞技场的连续非凸可因式分解规划问题,各种RLT约束生成和过滤策略,用于构建紧密管理松弛将开发,包括一类新的半定切割,以提高模型的表示。将探讨在国家空域规划和空中交通管理,生产调度,不确定性下的工程设计和无线通信网络设计中的应用。这些应用的研究将包括多面体分析的某些组合优化问题,如广义顶点包装问题和非对称旅行商problem.本研究的结果将推进概念,并提供深入了解问题的结构和建模策略,以及提供一个构造产生紧密松弛导致有效的程序来解决上述类型的问题。这些贡献将推动优化理论的发展,并影响上述应用领域。特别是,将与联邦航空管理局(FAA)合作研究拟议研究的空中交通管理应用,并将通过减少延误和相关的航空公司成本以及提高国家空域的安全和运营效率来造福社会。 来自工程学院的学生将参与这项研究工作,该项目产生的技术将通过公共领域软件传播。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hanif Sherali其他文献

Hanif Sherali的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hanif Sherali', 18)}}的其他基金

Collaborative Research: Reformulation-Linearization Technique for Discrete and Continuous Nonconvex Optimization with Applications
合作研究:离散和连续非凸优化的重构线性化技术及其应用
  • 批准号:
    0969169
  • 财政年份:
    2010
  • 资助金额:
    $ 32.06万
  • 项目类别:
    Standard Grant
Integrated Operations Planning Models and Algorithms for the Airline Industry
航空业综合运营规划模型和算法
  • 批准号:
    0754236
  • 财政年份:
    2008
  • 资助金额:
    $ 32.06万
  • 项目类别:
    Standard Grant
International Conference on Complementarity, Duality, and Global Optimization; August 15-17, 2005; Virginia Tech - Blacksburg, VA
互补性、二元性和全局优化国际会议;
  • 批准号:
    0455807
  • 财政年份:
    2005
  • 资助金额:
    $ 32.06万
  • 项目类别:
    Standard Grant
GOALI: Demand Driven Fleet Management Analysis, Models, and Algorithms for the Airline Industry
GOALI:航空业需求驱动的机队管理分析、模型和算法
  • 批准号:
    0245643
  • 财政年份:
    2003
  • 资助金额:
    $ 32.06万
  • 项目类别:
    Standard Grant
A Unifying Approach for Discrete and Continuous Nonconvex Optimization with Applications to Operational and Design Problems
离散和连续非凸优化的统一方法及其在操作和设计问题中的应用
  • 批准号:
    0094462
  • 财政年份:
    2001
  • 资助金额:
    $ 32.06万
  • 项目类别:
    Continuing Grant
Exploratory Research on Engineering the Transport Industries (ETI): Air-Traffic Management and Control Issues in the Terminal Area and in the Enroute National Airspace
运输工业工程 (ETI) 的探索性研究:航站区和航路国家空域的空中交通管理和控制问题
  • 批准号:
    0085640
  • 财政年份:
    2000
  • 资助金额:
    $ 32.06万
  • 项目类别:
    Standard Grant
Discrete and Continuous Nonconvex Optimization with Applications to Production, Distribution, and Design Problems
离散和连续非凸优化及其在生产、分销和设计问题中的应用
  • 批准号:
    9812047
  • 财政年份:
    1998
  • 资助金额:
    $ 32.06万
  • 项目类别:
    Standard Grant
Tight Polyhedral Relaxations for Discrete and Continuous Nonconvex Problems with Applications to Production, Distribution, and Design Problems
离散和连续非凸问题的紧多面体松弛及其在生产、分配和设计问题中的应用
  • 批准号:
    9521398
  • 财政年份:
    1995
  • 资助金额:
    $ 32.06万
  • 项目类别:
    Continuing Grant
A Reformulation-Linearization Technique with Application to Production, Location, Distribution, and Design Problems
应用于生产、定位、分销和设计问题的重构线性化技术
  • 批准号:
    9121419
  • 财政年份:
    1992
  • 资助金额:
    $ 32.06万
  • 项目类别:
    Continuing Grant
A New Reformulation Technique for Tightening Relaxations of Some Combinatorial Optimization Problems with Application tothe General Linear Complementarity Problem
一些组合优化问题紧松弛的新重构技术及其在一般线性互补问题中的应用
  • 批准号:
    8807090
  • 财政年份:
    1989
  • 资助金额:
    $ 32.06万
  • 项目类别:
    Continuing Grant

相似海外基金

Solvability of Parabolic Regularity problem in Lebesgue spaces
勒贝格空间中抛物线正则问题的可解性
  • 批准号:
    EP/Y033078/1
  • 财政年份:
    2024
  • 资助金额:
    $ 32.06万
  • 项目类别:
    Research Grant
Quasi self-similar transformation for a semilinear heat equation and its application to the solvability
半线性热方程的拟自相似变换及其在可解性中的应用
  • 批准号:
    23K03179
  • 财政年份:
    2023
  • 资助金额:
    $ 32.06万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Exact Solvability in Random Matrices and Data Sciences
随机矩阵和数据科学中的精确可解性
  • 批准号:
    2152588
  • 财政年份:
    2022
  • 资助金额:
    $ 32.06万
  • 项目类别:
    Continuing Grant
Exact Solvability in Random Matrices and Data Sciences
随机矩阵和数据科学中的精确可解性
  • 批准号:
    2246449
  • 财政年份:
    2022
  • 资助金额:
    $ 32.06万
  • 项目类别:
    Continuing Grant
Solvability and universality in stochastic processes
随机过程的可解性和普适性
  • 批准号:
    FT200100981
  • 财政年份:
    2021
  • 资助金额:
    $ 32.06万
  • 项目类别:
    ARC Future Fellowships
Roots of Polynomials over Infinite Rings with Applications to Cryptography: Investigating Solvability of and Approximation Tools for Polynomial Roots and the Error Bounds of Approximations Used in Rep
无限环上多项式的根及其在密码学中的应用:研究多项式根的可解性和近似工具以及表示中使用的近似的误差界
  • 批准号:
    544226-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 32.06万
  • 项目类别:
    Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Roots of Polynomials over Infinite Rings with Applications to Cryptography: Investigating Solvability of and Approximation Tools for Polynomial Roots and the Error Bounds of Approximations Used in Rep
无限环上多项式的根及其在密码学中的应用:研究多项式根的可解性和近似工具以及表示中使用的近似的误差界
  • 批准号:
    544226-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 32.06万
  • 项目类别:
    Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Roots of Polynomials over Infinite Rings with Applications to Cryptography: Investigating Solvability of and Approximation Tools for Polynomial Roots and the Error Bounds of Approximations Used in Rep
无限环上多项式的根及其在密码学中的应用:研究多项式根的可解性和近似工具以及表示中使用的近似的误差界
  • 批准号:
    544226-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 32.06万
  • 项目类别:
    Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Solvability and solutions' analysis of nonlinear elliptic equations from the viewpoint of eigenvalue problems
从特征值问题的角度看非线性椭圆方程的可解性及解分析
  • 批准号:
    19K03591
  • 财政年份:
    2019
  • 资助金额:
    $ 32.06万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Solvability for a nonlinear heat equation with singular initial data
具有奇异初始数据的非线性热方程的可解性
  • 批准号:
    19K14569
  • 财政年份:
    2019
  • 资助金额:
    $ 32.06万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了