Collaborative Research: Reformulation-Linearization Technique for Discrete and Continuous Nonconvex Optimization with Applications
合作研究:离散和连续非凸优化的重构线性化技术及其应用
基本信息
- 批准号:0969169
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-05-15 至 2013-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The research objective of this project is to develop theoretical and computational tools for solving difficult, large-scale, discrete and continuous nonconvex optimization problems. The work will focus on extending and refining a reformulation-linearization/convexification technique (RLT). The RLT is a methodological concept for enhancing problem solvability by constructing improved (tightened) mathematical models in lifted, higher-dimensional spaces. The intent of this study is to address several theoretical and algorithmic developments as well as computational implementation issues related to the RLT, and to identify and exploit mathematical structures that arise from applying it. Specifically, the work will include (1) an extension of the underlying RLT theory through the use of Lagrange interpolating polynomials to characterize structures of the convex hull of discrete sets by way of enhancing the ability to solve integer programs; (2) a unified RLT approach with semidefinite programming constructs along with filtering and basis-reduction techniques that can be used to design effective algorithms for solving discrete as well as continuous nonconvex optimization problems; and (3) the development of tailored methods for solving both discrete and nonlinear problems having certain special structures that arise in particular applications.The results of this study are expected to lead to more efficient tools for solving a variety of challenging nonconvex optimization programs, both discrete and continuous. The discrete programs arise in such diverse areas as clustering, cryptography, facility layout, logical inference, and scheduling, while the continuous nonconvex programs have applications in engineering design, network design, risk management, and Homeland Security. The research will also demonstrate how the algebraic properties of Lagrange interpolating polynomials can be exploited to analyze and generate cuts for mixed-integer and continuous nonlinear programming problems. Conceptually, the research will unify the realms of discrete and continuous optimization, and improve understanding of these domains.
该项目的研究目标是开发解决困难的、大规模的、离散的和连续的非凸优化问题的理论和计算工具。这项工作将侧重于扩展和完善一种重新表述-线性化/凸化技术(RLT)。RLT是一种方法论概念,通过在提升的、更高维的空间中构建改进的(紧凑的)数学模型来增强问题的可解性。这项研究的目的是解决与RLT相关的几个理论和算法发展以及计算实施问题,并确定和利用应用它所产生的数学结构。具体地说,这项工作将包括:(1)通过使用拉格朗日插值多项式来刻画离散集凸壳的结构,以增强求解整数规划的能力,从而扩展了基本的RLT理论;(2)使用半定规划构造以及过滤和基减缩技术的统一RLT方法,可以用于设计求解离散和连续非凸优化问题的有效算法;以及(3)为解决特定应用中出现的具有特定结构的离散和非线性问题的定制方法的发展。这项研究的结果有望导致更有效的工具来解决各种具有挑战性的非凸优化问题,包括离散的和连续的。离散规划出现在集群、密码学、设施布局、逻辑推理、调度等领域,而连续非凸规划在工程设计、网络设计、风险管理、国土安全等领域有着广泛的应用。研究还将演示如何利用拉格朗日插值多项式的代数性质来分析和生成混合整数和连续非线性规划问题的割集。从概念上讲,这项研究将统一离散优化和连续优化的领域,并提高对这些领域的理解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hanif Sherali其他文献
Hanif Sherali的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hanif Sherali', 18)}}的其他基金
Integrated Operations Planning Models and Algorithms for the Airline Industry
航空业综合运营规划模型和算法
- 批准号:
0754236 - 财政年份:2008
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Enhancing the Solvability of Discrete and Continuous Nonconvex Programs with Applications to Production, Design, and Operational Problems
通过在生产、设计和操作问题中的应用来增强离散和连续非凸程序的可解性
- 批准号:
0552676 - 财政年份:2006
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
International Conference on Complementarity, Duality, and Global Optimization; August 15-17, 2005; Virginia Tech - Blacksburg, VA
互补性、二元性和全局优化国际会议;
- 批准号:
0455807 - 财政年份:2005
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
GOALI: Demand Driven Fleet Management Analysis, Models, and Algorithms for the Airline Industry
GOALI:航空业需求驱动的机队管理分析、模型和算法
- 批准号:
0245643 - 财政年份:2003
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
A Unifying Approach for Discrete and Continuous Nonconvex Optimization with Applications to Operational and Design Problems
离散和连续非凸优化的统一方法及其在操作和设计问题中的应用
- 批准号:
0094462 - 财政年份:2001
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Exploratory Research on Engineering the Transport Industries (ETI): Air-Traffic Management and Control Issues in the Terminal Area and in the Enroute National Airspace
运输工业工程 (ETI) 的探索性研究:航站区和航路国家空域的空中交通管理和控制问题
- 批准号:
0085640 - 财政年份:2000
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Discrete and Continuous Nonconvex Optimization with Applications to Production, Distribution, and Design Problems
离散和连续非凸优化及其在生产、分销和设计问题中的应用
- 批准号:
9812047 - 财政年份:1998
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Tight Polyhedral Relaxations for Discrete and Continuous Nonconvex Problems with Applications to Production, Distribution, and Design Problems
离散和连续非凸问题的紧多面体松弛及其在生产、分配和设计问题中的应用
- 批准号:
9521398 - 财政年份:1995
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
A Reformulation-Linearization Technique with Application to Production, Location, Distribution, and Design Problems
应用于生产、定位、分销和设计问题的重构线性化技术
- 批准号:
9121419 - 财政年份:1992
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
A New Reformulation Technique for Tightening Relaxations of Some Combinatorial Optimization Problems with Application tothe General Linear Complementarity Problem
一些组合优化问题紧松弛的新重构技术及其在一般线性互补问题中的应用
- 批准号:
8807090 - 财政年份:1989
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348998 - 财政年份:2025
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: REU Site: Earth and Planetary Science and Astrophysics REU at the American Museum of Natural History in Collaboration with the City University of New York
合作研究:REU 地点:地球与行星科学和天体物理学 REU 与纽约市立大学合作,位于美国自然历史博物馆
- 批准号:
2348999 - 财政年份:2025
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
"Small performances": investigating the typographic punches of John Baskerville (1707-75) through heritage science and practice-based research
“小型表演”:通过遗产科学和基于实践的研究调查约翰·巴斯克维尔(1707-75)的印刷拳头
- 批准号:
AH/X011747/1 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Research Grant
Democratizing HIV science beyond community-based research
将艾滋病毒科学民主化,超越社区研究
- 批准号:
502555 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Translational Design: Product Development for Research Commercialisation
转化设计:研究商业化的产品开发
- 批准号:
DE240100161 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Discovery Early Career Researcher Award
Understanding the experiences of UK-based peer/community-based researchers navigating co-production within academically-led health research.
了解英国同行/社区研究人员在学术主导的健康研究中进行联合生产的经验。
- 批准号:
2902365 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Studentship
XMaS: The National Material Science Beamline Research Facility at the ESRF
XMaS:ESRF 的国家材料科学光束线研究设施
- 批准号:
EP/Y031962/1 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Research Grant
FCEO-UKRI Senior Research Fellowship - conflict
FCEO-UKRI 高级研究奖学金 - 冲突
- 批准号:
EP/Y033124/1 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Research Grant
UKRI FCDO Senior Research Fellowships (Non-ODA): Critical minerals and supply chains
UKRI FCDO 高级研究奖学金(非官方发展援助):关键矿产和供应链
- 批准号:
EP/Y033183/1 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Research Grant
TARGET Mineral Resources - Training And Research Group for Energy Transition Mineral Resources
TARGET 矿产资源 - 能源转型矿产资源培训与研究小组
- 批准号:
NE/Y005457/1 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Training Grant














{{item.name}}会员




