Discrete and Continuous Nonconvex Optimization with Applications to Production, Distribution, and Design Problems
离散和连续非凸优化及其在生产、分销和设计问题中的应用
基本信息
- 批准号:9812047
- 负责人:
- 金额:$ 21.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-09-01 至 2001-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9812047Sherali This grant provides funding for the development and study of a new methodology, the Reformulation-Linearization/Convexification Technique (RLT), for generating tight relaxations that can be used to construct exact solution methods as well as to design powerful heuristic procedures for large classes of discrete combinatorial and continuous nonconvex programming problems. For linear mixed-integer 0-1 problems, specialized RLT relaxations that are enhanced by conditional logic implications will be developed and embedded within a dynamic Lagrangian Relaxation constraint generation scheme. In the context of continuous nonconvex programs, new theoretically convergent and computationally effective global optimization RLT approaches will be developed to solve a wide class of factorable nonlinear programs. Extensions and specializations for minimax problems that arise in situations dealing with multiple criteria and equity issues, and for general integer/discrete problems will also be explored. In order to effectively cope with the size and structure of the relaxations that are typically generated by RLT, various Lagrangian dual, aggregation, penalty function, trust region, and conjugate/deflected subgradient methods will be investigated. These ideas and methods will be applied to design novel approaches to solve a variety of location-allocation problems, telecommunication and pipe-network design problems, machine scheduling problems, and air traffic control management problems. If successful, the results of this research will lead to the development of a new comprehensive technology that unifies many important concepts and offers insights into problem structures and modeling strategies. Operations Research analysts and practitioners will be able to use this methodology to construct tight model representations, generate strong valid inequalities, and design effective procedures for solving hard, discrete and continuous, nonconvex problems that arise often in practice. The research canl contribute toward the design of various computational tools that may be incorporated in public domain software for solving such classes of problems.
小行星9812047 这笔赠款提供资金的开发和研究的一种新的方法,重新制定线性化/凸化技术(RLT),产生紧松弛,可用于构建精确的解决方案的方法,以及设计强大的启发式程序的大类离散组合和连续的非凸规划问题。对于线性混合整数0-1问题,将开发通过条件逻辑含义增强的专用RLT松弛,并嵌入动态拉格朗日松弛约束生成方案中。在连续非凸规划的背景下,新的理论上收敛和计算有效的全局优化RLT方法将被开发来解决广泛的一类可因子分解的非线性规划。在处理多个标准和公平问题的情况下出现的极大极小问题,以及一般整数/离散问题的扩展和专业化也将进行探讨。 为了有效地科普的大小和结构的松弛,通常产生的RLT,各种拉格朗日对偶,聚合,罚函数,信赖域,共轭/偏转次梯度法将进行调查。这些想法和方法将被应用于设计新的方法来解决各种位置分配问题,电信和管道网络设计问题,机器调度问题,空中交通管制管理问题。 如果成功的话,这项研究的结果将导致一种新的综合技术的发展,该技术将许多重要的概念统一起来,并提供对问题结构和建模策略的见解。运筹学分析师和从业者将能够使用这种方法来构建紧密的模型表示,生成强有效的不等式,并设计有效的程序来解决实践中经常出现的困难,离散和连续,非凸问题。这项研究可以有助于设计各种计算工具,可以纳入公共领域的软件来解决这类问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hanif Sherali其他文献
Hanif Sherali的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hanif Sherali', 18)}}的其他基金
Collaborative Research: Reformulation-Linearization Technique for Discrete and Continuous Nonconvex Optimization with Applications
合作研究:离散和连续非凸优化的重构线性化技术及其应用
- 批准号:
0969169 - 财政年份:2010
- 资助金额:
$ 21.56万 - 项目类别:
Standard Grant
Integrated Operations Planning Models and Algorithms for the Airline Industry
航空业综合运营规划模型和算法
- 批准号:
0754236 - 财政年份:2008
- 资助金额:
$ 21.56万 - 项目类别:
Standard Grant
Enhancing the Solvability of Discrete and Continuous Nonconvex Programs with Applications to Production, Design, and Operational Problems
通过在生产、设计和操作问题中的应用来增强离散和连续非凸程序的可解性
- 批准号:
0552676 - 财政年份:2006
- 资助金额:
$ 21.56万 - 项目类别:
Standard Grant
International Conference on Complementarity, Duality, and Global Optimization; August 15-17, 2005; Virginia Tech - Blacksburg, VA
互补性、二元性和全局优化国际会议;
- 批准号:
0455807 - 财政年份:2005
- 资助金额:
$ 21.56万 - 项目类别:
Standard Grant
GOALI: Demand Driven Fleet Management Analysis, Models, and Algorithms for the Airline Industry
GOALI:航空业需求驱动的机队管理分析、模型和算法
- 批准号:
0245643 - 财政年份:2003
- 资助金额:
$ 21.56万 - 项目类别:
Standard Grant
A Unifying Approach for Discrete and Continuous Nonconvex Optimization with Applications to Operational and Design Problems
离散和连续非凸优化的统一方法及其在操作和设计问题中的应用
- 批准号:
0094462 - 财政年份:2001
- 资助金额:
$ 21.56万 - 项目类别:
Continuing Grant
Exploratory Research on Engineering the Transport Industries (ETI): Air-Traffic Management and Control Issues in the Terminal Area and in the Enroute National Airspace
运输工业工程 (ETI) 的探索性研究:航站区和航路国家空域的空中交通管理和控制问题
- 批准号:
0085640 - 财政年份:2000
- 资助金额:
$ 21.56万 - 项目类别:
Standard Grant
Tight Polyhedral Relaxations for Discrete and Continuous Nonconvex Problems with Applications to Production, Distribution, and Design Problems
离散和连续非凸问题的紧多面体松弛及其在生产、分配和设计问题中的应用
- 批准号:
9521398 - 财政年份:1995
- 资助金额:
$ 21.56万 - 项目类别:
Continuing Grant
A Reformulation-Linearization Technique with Application to Production, Location, Distribution, and Design Problems
应用于生产、定位、分销和设计问题的重构线性化技术
- 批准号:
9121419 - 财政年份:1992
- 资助金额:
$ 21.56万 - 项目类别:
Continuing Grant
A New Reformulation Technique for Tightening Relaxations of Some Combinatorial Optimization Problems with Application tothe General Linear Complementarity Problem
一些组合优化问题紧松弛的新重构技术及其在一般线性互补问题中的应用
- 批准号:
8807090 - 财政年份:1989
- 资助金额:
$ 21.56万 - 项目类别:
Continuing Grant
相似海外基金
3D Printing Proteins for Continuous Flow Biocatalysis and Bioabsorbtion
用于连续流生物催化和生物吸收的 3D 打印蛋白质
- 批准号:
2753054 - 财政年份:2026
- 资助金额:
$ 21.56万 - 项目类别:
Studentship
Collaborative Research: Scalable Nanomanufacturing of Perovskite-Analogue Nanocrystals via Continuous Flow Reactors
合作研究:通过连续流反应器进行钙钛矿类似物纳米晶体的可扩展纳米制造
- 批准号:
2315997 - 财政年份:2024
- 资助金额:
$ 21.56万 - 项目类别:
Standard Grant
PFI-TT: A Novel Wireless Sensor for Continuous Monitoring of Patients with Chronic Diseases
PFI-TT:一种用于持续监测慢性病患者的新型无线传感器
- 批准号:
2345803 - 财政年份:2024
- 资助金额:
$ 21.56万 - 项目类别:
Continuing Grant
Continuous, Large-scale Manufacturing of Functionalized Silver Nanowire Transparent Conducting Films
功能化银纳米线透明导电薄膜的连续大规模制造
- 批准号:
2422696 - 财政年份:2024
- 资助金额:
$ 21.56万 - 项目类别:
Standard Grant
I-Corps: Centralized, Cloud-Based, Artificial Intelligence (AI) Video Analysis for Enhanced Intubation Documentation and Continuous Quality Control
I-Corps:基于云的集中式人工智能 (AI) 视频分析,用于增强插管记录和持续质量控制
- 批准号:
2405662 - 财政年份:2024
- 资助金额:
$ 21.56万 - 项目类别:
Standard Grant
Continuous flow solvothermal synthesis of silver-3d metals nanoalloys for platinum-group-free catalysts
用于无铂族催化剂的银-3D金属纳米合金的连续流动溶剂热合成
- 批准号:
24K17587 - 财政年份:2024
- 资助金额:
$ 21.56万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Seismic Performance and Evaluation of Hybrid Frame with CFST Column-continuous Beam Joints
钢管混凝土柱-连续梁节点混合框架抗震性能及评价
- 批准号:
24K17393 - 财政年份:2024
- 资助金额:
$ 21.56万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The Synthesis and Continuous Manufacture of Novel, High Performing Polymeric Lubricants for the Next Generation of Electric Transportation
用于下一代电动交通的新型高性能聚合物润滑剂的合成和连续制造
- 批准号:
2489089 - 财政年份:2024
- 资助金额:
$ 21.56万 - 项目类别:
Studentship
AI Assisted Continuous Flow Electrochemistry for Pharmaceutical Manufacture
人工智能辅助制药制造的连续流电化学
- 批准号:
LP230100436 - 财政年份:2024
- 资助金额:
$ 21.56万 - 项目类别:
Linkage Projects
CAREER: Understanding the Integrated Cyber-Physical Resilience of Continuous Critical Manufacturing
职业:了解连续关键制造的集成网络物理弹性
- 批准号:
2338968 - 财政年份:2024
- 资助金额:
$ 21.56万 - 项目类别:
Standard Grant