Mathematical Sciences: Conformal Mapping, Riemann Surfaces, and Circle Packings
数学科学:共形映射、黎曼曲面和圆堆积
基本信息
- 批准号:9201747
- 负责人:
- 金额:$ 4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1992
- 资助国家:美国
- 起止时间:1992-08-01 至 1994-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project combines the mathematics of classical geometric function theory with newly discovered applications of circle packing. The source of this connection lies in a conjecture of W. Thurston in 1985 that one should be able to obtain good approximations to the Riemann map of a simply connection planar domain through a circle packing of the domain following by a mapping of the circles by a prescribed algorithm. This turned out to be the case and is now known as the Finite Riemann Mapping Theorem. The proof spawned a new line of investigation within the field of complex analysis: what type of theorems can be proved by circle packing and, more importantly, what new discoveries are opened up by means of this new technique? Work now continues as the breadth of possibilities broadens. Topics to be investigated include hexagonal packing and the asymptotics and the ratios of maximum and minimum radii, the classical problem of canonical conformal maps of multiply connected regions - whether arbitrary domains are conformally equivalent to domains with boundary components of circles or line. Work will also be done in extending results on osculating Mobius transformations of a circle packing which are known to converge and give the first and second derivatives of the Riemann map. The question of whether higher order derivatives can also be approximated will be examined. Complex function theory encompasses the study of differentiable functions of a complex variable and related classes of functions such as harmonic functions and quasiconformal mappings. The subject is highly geometric; many of the problems concern the properties of various sets under transform by functions from one of the above classes. Applications to potential theory and fluid dynamics is now standard in engineering circles.
这个项目结合了经典几何函数理论的数学和新发现的圆填充的应用。这种联系的根源在于W.瑟斯顿在1985年提出的一个猜想,即人们应该能够通过对简单连通平面区域进行圆填充,然后用规定的算法对圆进行映射来获得对该区域的Riemann映射的良好逼近。事实证明就是这样,现在被称为有限黎曼映射定理。这一证明在复分析领域内催生了一条新的研究路线:什么类型的定理可以通过圈填充来证明,更重要的是,通过这种新技术可以打开什么新的发现?随着可能性的扩大,这项工作现在还在继续。要研究的主题包括六角填充和最大与最小半径的渐近性和比率,多连通区域的正则共形映射的经典问题--任意区域是否与具有圆或线边界分量的区域共形等价。我们还将推广关于圆填充的密切Mobius变换的结果,已知这些变换是收敛的,并给出黎曼映射的一阶和二阶导数。高阶导数是否也可以近似的问题将被研究。复变函数论研究复变数的可微函数和相关的函数类,如调和函数和拟共形映射。这个主题是高度几何的;许多问题涉及上述类中的一个函数变换下的各种集合的性质。位势理论和流体动力学的应用现在是工程界的标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Burton Rodin其他文献
Extremal length and univalent functions
- DOI:
10.1007/bf01214728 - 发表时间:
1977-02-01 - 期刊:
- 影响因子:1.000
- 作者:
Burton Rodin;Stefan E. Warschawski - 通讯作者:
Stefan E. Warschawski
On the derivative of the Riemann mapping function near a boundary point and the Visser-Ostrowski problem
- DOI:
10.1007/bf01421953 - 发表时间:
1980-06-01 - 期刊:
- 影响因子:1.400
- 作者:
Burton Rodin;S. E. Warschawski - 通讯作者:
S. E. Warschawski
Burton Rodin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Burton Rodin', 18)}}的其他基金
Mathematical Sciences: Research in Conformal Mapping
数学科学:共形映射研究
- 批准号:
9400733 - 财政年份:1994
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
Mathematical Sciences: Conformal uniformization and circle packing immersions.
数学科学:共形均匀化和圆堆积浸入。
- 批准号:
9403548 - 财政年份:1994
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
Mathematical Sciences: Problems Relating to the Circle Packing Theorem
数学科学:与圆堆积定理相关的问题
- 批准号:
9112150 - 财政年份:1991
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
Mathematical Sciences: Evolution Equations in Geometry
数学科学:几何演化方程
- 批准号:
9003333 - 财政年份:1990
- 资助金额:
$ 4万 - 项目类别:
Continuing Grant
Mathematical Sciences: Conference on Computational Aspects of Complex Analysis; San Diego, California, August 13-18, 1988
数学科学:复分析计算方面的会议;
- 批准号:
8804580 - 财政年份:1988
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
Mathematical Sciences: Evolution Equations in Geometry
数学科学:几何演化方程
- 批准号:
8701613 - 财政年份:1987
- 资助金额:
$ 4万 - 项目类别:
Continuing Grant
Mathematical Sciences: Geometric Analysis: Research and Conformal Mapping, Extremal Length, and Riemann Surfaces
数学科学:几何分析:研究和共形映射、极值长度和黎曼曲面
- 批准号:
8701196 - 财政年份:1987
- 资助金额:
$ 4万 - 项目类别:
Continuing Grant
Mathematical Sciences: Conformal Mapping, Extremal Length, and Riemann Surfaces
数学科学:共形映射、极值长度和黎曼曲面
- 批准号:
8303282 - 财政年份:1983
- 资助金额:
$ 4万 - 项目类别:
Continuing Grant
Regional Conference in Hyperbolic Geometry, 3-Dimensional Topology, and Kleinian Groups; San Diego, California; August 24-29, 1981
双曲几何、三维拓扑和克莱尼群区域会议;
- 批准号:
8104821 - 财政年份:1981
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
Conformal Mapping, Extremal Length and Riemann Surfaces
共形映射、极值长度和黎曼曲面
- 批准号:
8103438 - 财政年份:1981
- 资助金额:
$ 4万 - 项目类别:
Continuing Grant
相似国自然基金
Handbook of the Mathematics of the Arts and Sciences的中文翻译
- 批准号:12226504
- 批准年份:2022
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
SCIENCE CHINA: Earth Sciences
- 批准号:41224003
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21224005
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Information Sciences
- 批准号:61224002
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51224001
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21024806
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
- 批准号:81024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
- 批准号:41024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
Mathematical Sciences: Harmonic Measure, Conformal Mappings, and Geometric Measure Theory
数学科学:调和测度、共形映射和几何测度理论
- 批准号:
9706875 - 财政年份:1997
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
Mathematical Sciences: Vertex Operators Algebras, Conformal Field Theories, and Geometry
数学科学:顶点算子代数、共形场论和几何
- 批准号:
9622961 - 财政年份:1996
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
Mathematical Sciences: Conformal Field Theory and Its Generalizations
数学科学:共形场论及其推广
- 批准号:
9627782 - 财政年份:1996
- 资助金额:
$ 4万 - 项目类别:
Continuing Grant
Mathematical Sciences: Algebraic Topology of Algebraic Varieties, Conformal Field Theory
数学科学:代数簇的代数拓扑、共形场论
- 批准号:
9625768 - 财政年份:1996
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
Mathematical Sciences: Generalized Theta Functions, Hypergeometric and Conformal Field Theory
数学科学:广义 Theta 函数、超几何和共形场论
- 批准号:
9696197 - 财政年份:1996
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
Mathematical Sciences: Representations of Affine Lie Algebras and Quantum Groups and Conformal Field Theory
数学科学:仿射李代数和量子群的表示以及共形场论
- 批准号:
9696028 - 财政年份:1995
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
Mathematical Sciences: Generalized Theta Functions, Hypergeometric and Conformal Field Theory
数学科学:广义 Theta 函数、超几何和共形场论
- 批准号:
9504884 - 财政年份:1995
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
Mathematical Sciences: Research in Conformal Mapping
数学科学:共形映射研究
- 批准号:
9400733 - 财政年份:1994
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
Mathematical Sciences: Research on Conformal Field Theory
数学科学:共形场论研究
- 批准号:
9400841 - 财政年份:1994
- 资助金额:
$ 4万 - 项目类别:
Continuing Grant
Mathematical Sciences: Geometric Conformal Field Theories, Mirror Symmetry, and Algebraic Geometry
数学科学:几何共形场论、镜像对称和代数几何
- 批准号:
9401447 - 财政年份:1994
- 资助金额:
$ 4万 - 项目类别:
Continuing Grant