Mathematical Sciences: Topics in Low-Dimensional Topology
数学科学:低维拓扑专题
基本信息
- 批准号:9204331
- 负责人:
- 金额:$ 14.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1992
- 资助国家:美国
- 起止时间:1992-08-15 至 1997-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The study of 3-manifolds is often enriched by imposing extra structure on the manifold: geometric structure such as a Riemannian metric of negative curvature, or topological-dynamical structure such as a flow or lamination. The two investigators will continue research into 3-manifold supporting laminations and pseudo-Anosov flows. They will also undertake new research into the structure of 3-manifolds and more general spaces which are not negatively curved. In a joint project, Mosher and Oertel will explore a new technique for analyzing such spaces. Any such space can be made to support a certain kind of 2-dimensional measured lamination. The properties of this lamination will be studied and used in an attempt to shed light on the general structure of these spaces. In a separate project, Mosher will continue a study of Thurston's homology norm for a 3-manifold, and techniques for computing this norm using pseudo-Anosov flows. He will also pursue a computer study of ends of hyperbolic 3- manifolds. In still another separate project, Oertel will continue research into a class of 3-manifolds called laminated manifolds. The first goal is to extend methods and theorems from the well-known class of Haken manifolds to the larger class of laminated manifolds. The second goal is to show that, in some sense, "most" 3-manifolds are laminated. It is a surprising fact that, although we live in a three dimensional space, a so-called 3-manifold, and so are blessed with a natural intuition about such geometric objects, in the end this does not carry us as far as we might have expected, for questions which have been settled by algebraic calculations for higher dimensional manifolds still remain baffling in the 3- dimensional case. The most famous of these is the celebrated conjecture of Poincare from around the turn of the century concerning 3-dimensional spheres, where precisely the original 3- dimensional case is the only one still open. The investigators are pursuing a variety of questions about 3-dimensional manifolds, some with slightly strange notions of distance on them, so-called hyperbolic metrics, but time and time again these questions have been shown to have clear relevance to the case of manifolds with a more familiar notion of distance.
3-流形的研究通常通过在流形上施加额外的结构来丰富:几何结构,如负曲率的黎曼度量,或拓扑-动力结构,如流或分层。这两位研究人员将继续研究支持叠层和伪阿诺索夫流的3-流形。他们还将对三维流形和更一般的非负曲线空间的结构进行新的研究。在一个联合项目中,Mosher和Oertel将探索一种分析此类空间的新技术。任何这样的空间都可以被制造成支撑某种类型的二维测量叠层。将研究和使用这种叠层的特性,试图阐明这些空间的一般结构。在另一个单独的项目中,Mosher将继续研究3-流形上的瑟斯顿同调范数,以及使用伪Anosov流计算该范数的技术。他还将对双曲三维流形的末端进行计算机研究。在另一个单独的项目中,Oertel将继续研究一类称为叠层流形的3-流形。第一个目标是将方法和定理从著名的Haken流形推广到更大的层叠流形。第二个目标是证明,在某种意义上,“大多数”3-流形是层合的。一个令人惊讶的事实是,尽管我们生活在一个三维空间,也就是所谓的三维流形中,因此我们对这样的几何对象有一种自然的直觉,但最终这并没有带给我们我们可能预期的那样远的距离,因为通过代数计算解决的问题在三维情况下仍然令人困惑。其中最著名的是世纪之交关于三维球体的著名的庞加莱猜想,其中确切地说,原始的三维情况是唯一仍然开放的。研究人员正在探索关于三维流形的各种问题,其中一些问题带有稍微奇怪的距离概念,即所谓的双曲线度量,但这些问题一次又一次地被证明与具有更熟悉距离概念的流形的情况有明显的相关性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lee Mosher其他文献
Maximally Symmetric Trees
- DOI:
10.1023/a:1019685632755 - 发表时间:
2002-01-01 - 期刊:
- 影响因子:0.500
- 作者:
Lee Mosher;Michah Sageev;Kevin Whyte - 通讯作者:
Kevin Whyte
Lee Mosher的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lee Mosher', 18)}}的其他基金
Hierarchy Theory for Automorphism and Outer Automorphism Groups of Free Groups
自由群的自同构和外自同构群的层次理论
- 批准号:
1708361 - 财政年份:2017
- 资助金额:
$ 14.22万 - 项目类别:
Continuing Grant
Geometry and dynamics of outer automorphism groups of free groups
自由群外自同构群的几何与动力学
- 批准号:
1406376 - 财政年份:2014
- 资助金额:
$ 14.22万 - 项目类别:
Continuing Grant
The geometry of outer space: investigated through its analogy with Teichmuller space
外层空间的几何形状:通过与泰希米勒空间的类比进行研究
- 批准号:
1331129 - 财政年份:2013
- 资助金额:
$ 14.22万 - 项目类别:
Standard Grant
Geometry of the outer automorphism group of a free group
自由群外自同构群的几何
- 批准号:
1006248 - 财政年份:2010
- 资助金额:
$ 14.22万 - 项目类别:
Continuing Grant
Geometry of Mapping Class Groups and Outer Automorphism Groups
映射类群和外自同构群的几何
- 批准号:
0706799 - 财政年份:2007
- 资助金额:
$ 14.22万 - 项目类别:
Continuing Grant
Mathematical Sciences: Topics in Low-Dimensional Topology and Geometric Group Theory
数学科学:低维拓扑和几何群论专题
- 批准号:
9504946 - 财政年份:1995
- 资助金额:
$ 14.22万 - 项目类别:
Continuing Grant
Mathematical Sciences: Dynamical Systems in 3-dimensional Topology
数学科学:3 维拓扑中的动力系统
- 批准号:
9002587 - 财政年份:1990
- 资助金额:
$ 14.22万 - 项目类别:
Standard Grant
相似国自然基金
Handbook of the Mathematics of the Arts and Sciences的中文翻译
- 批准号:12226504
- 批准年份:2022
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
SCIENCE CHINA: Earth Sciences
- 批准号:41224003
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21224005
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Information Sciences
- 批准号:61224002
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51224001
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21024806
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
- 批准号:81024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
- 批准号:41024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
Mathematical Sciences aiming at medical application of light propagation in biomedical tissues and related topics
针对生物医学组织中光传播的医学应用的数学科学及相关主题
- 批准号:
16H02155 - 财政年份:2016
- 资助金额:
$ 14.22万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
CBMS Regional Conference in the Mathematical Sciences - "Finite Morse Index Solutions and Related Topics" -Winter 2007
CBMS 数学科学区域会议 - “有限莫尔斯指数解决方案和相关主题” - 2007 年冬季
- 批准号:
0628079 - 财政年份:2007
- 资助金额:
$ 14.22万 - 项目类别:
Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences -Generalized Linear Mixed Models and Related Topics - June 8-12,1999
NSF/CBMS 数学科学区域会议 - 广义线性混合模型及相关主题 - 1999 年 6 月 8 日至 12 日
- 批准号:
9813374 - 财政年份:1999
- 资助金额:
$ 14.22万 - 项目类别:
Standard Grant
Mathematical Sciences: Symbolic Dynamics and Related Topics
数学科学:符号动力学及相关主题
- 批准号:
9706852 - 财政年份:1997
- 资助金额:
$ 14.22万 - 项目类别:
Continuing Grant
Mathematical Sciences: Topics in Fluid Dynamics
数学科学:流体动力学主题
- 批准号:
9622735 - 财政年份:1996
- 资助金额:
$ 14.22万 - 项目类别:
Standard Grant
Mathematical Sciences: Topics in Nonparametric Analysis and Model Building
数学科学:非参数分析和模型构建主题
- 批准号:
9625777 - 财政年份:1996
- 资助金额:
$ 14.22万 - 项目类别:
Continuing Grant
Mathematical Sciences: Topics in Model Theory
数学科学:模型论主题
- 批准号:
9696268 - 财政年份:1996
- 资助金额:
$ 14.22万 - 项目类别:
Continuing Grant
Mathematical Sciences: Mathematical Topics in Combustion
数学科学:燃烧中的数学主题
- 批准号:
9600103 - 财政年份:1996
- 资助金额:
$ 14.22万 - 项目类别:
Continuing Grant
Mathematical Sciences: Diffusion Processes and Related Topics
数学科学:扩散过程及相关主题
- 批准号:
9625782 - 财政年份:1996
- 资助金额:
$ 14.22万 - 项目类别:
Continuing grant
Mathematical Sciences: Topics in Commutative Algebra
数学科学:交换代数主题
- 批准号:
9622224 - 财政年份:1996
- 资助金额:
$ 14.22万 - 项目类别:
Standard Grant