Mathematical Sciences: Topics in Low-Dimensional Topology and Geometric Group Theory
数学科学:低维拓扑和几何群论专题
基本信息
- 批准号:9504946
- 负责人:
- 金额:$ 7.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1995
- 资助国家:美国
- 起止时间:1995-07-15 至 2000-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9504946 Mosher This research project is focussed on negative curvature in the sense of Gromov. The principal investigator (working jointly with U. Oertel) has proved a "Lamination Theorem" which says that for a compact cell-complex X, exactly one of two alternatives holds: either X is negatively curved in the sense of Gromov, or there is a 2-dimensional lamination mapping to X with certain properties, namely the lamination has a transverse measure of Euler characteristic zero, and the map from the universal cover of a leaf to X is least area. The primary aim of this project is to use the Lamination Theorem to investigate the "weak hyperbolization conjecture" for a 3-manifold M, which says that M is negatively curved in the sense of Gromov if and only if the fundamental group of M has no Z+Z subgroup. The strong form of this conjecture has been one of the greatest challenges in 3-manifold theory. The weak conjecture should be a significant step in proving the strong conjecture, in light of recent work of Cannon on characterizing hyperbolic 3-manifold groups, and work of Gabai on the topological rigidity problem for hyperbolic manifolds; if these various projects can be completed, then the hyperbolization conjecture would be proved. This research project is also concerned with several other topics, in particular: understanding properties of automatic and biautomatic groups; the geometric group theory of mapping class groups; constructions of and properties of pseudo-Anosov flows on 3-manifolds. Group theory, the mathematical study of symmetry invented by E. Galois in the 1700's, has for much of its history been a subject of abstract algebra, despite its geometric origins. Starting with work of M. Gromov, J. Cannon, W. Thurston and others in the 1970's and 1980's, the newly emergent field of geometric group theory has returned group theory to its origins. The basic problem, proposed by Gromov in his 1983 address to the International Congress of Math ematics, is to take a "group" (an abstractly described collection of symmetries) and to understand its geometry. As a particular case of Gromov's program, suppose that S is a 3-dimensional space, much like the space that we inhabit, and suppose that G is a certain group of symmetries of S; in this situation Thurston conjectured in the late 1970's that the geometry of G should fall into a list of specific classes. In most cases Thurston's conjecture says that G should have "hyperbolic" geometry, a type of geometry that describes how 3-dimensional space fits into 4-dimensional space-time in relativity theory. The main thrust of the current research project is an attempt to prove Thurston's "hyperbolization conjecture." Recent work of D. Gabai, J. Cannon, and the investigator wih U. Oertel suggests a three-step approach to proving the hyperbolization conjecture, and this project is concerned with one step, the so-called "weak hyperbolization conjecture." While this is an ambitious project, the investigator expects it to be productive; if it is completely successful, and if the other two steps are finished as the work of Cannon and of Gabai suggests, then the hyperbolization conjecture will be proved. ***
这个研究项目的重点是格罗莫夫意义上的负曲率。首席研究员(与U. Oertel合作)证明了一个“层积定理”,该定理表明,对于紧致细胞复合体X,只有两种选择之一成立:X在Gromov意义上是负弯曲的,或者存在到X的二维层积映射具有某些性质,即层积具有欧拉特征零的横向度量,并且从叶子的普遍覆盖到X的映射面积最小。本课题的主要目的是利用层积定理研究3流形M的“弱夸张猜想”,该猜想表明M在Gromov意义上是负弯曲的,当且仅当M的基本群没有Z+Z子群。这个猜想的强形式一直是三流形理论中最大的挑战之一。鉴于Cannon最近关于双曲3流形群的刻画工作和Gabai关于双曲流形拓扑刚性问题的工作,弱猜想应该是证明强猜想的重要一步;如果这些不同的工程都能完成,那么夸张猜想就被证明了。本研究项目还涉及其他几个主题,特别是:理解自动和双自动群体的性质;映射类群的几何群论3流形上伪anosov流的构造与性质。群论是17世纪由伽罗瓦(E. Galois)发明的关于对称性的数学研究,尽管它起源于几何,但在其历史的大部分时间里,它一直是抽象代数的主题。从20世纪七八十年代M. Gromov、J. Cannon、W. Thurston等人的工作开始,新兴的几何群论领域使群论回到了它的起源。1983年,格罗莫夫在国际数学大会上提出的基本问题是,取一个“群”(一个抽象描述的对称集合),并理解它的几何形状。作为格罗莫夫规划的一个特例,假设S是一个三维空间,就像我们所居住的空间一样,假设G是S的一组对称性;在这种情况下,瑟斯顿在20世纪70年代末推测G的几何应该属于一系列特定的类。在大多数情况下,瑟斯顿猜想认为G应该具有“双曲”几何,这是一种描述相对论中三维空间如何适应四维时空的几何。当前研究项目的主要目的是试图证明瑟斯顿的“夸张猜想”。D. Gabai、J. Cannon和U. Oertel的研究人员最近的工作提出了一个三步法来证明夸张猜想,而这个项目只涉及一步,即所谓的“弱夸张猜想”。虽然这是一个雄心勃勃的项目,研究者希望它是富有成效的;如果它是完全成功的,如果其他两个步骤都完成了Cannon和Gabai的工作,那么夸张猜想将被证明。***
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lee Mosher其他文献
Maximally Symmetric Trees
- DOI:
10.1023/a:1019685632755 - 发表时间:
2002-01-01 - 期刊:
- 影响因子:0.500
- 作者:
Lee Mosher;Michah Sageev;Kevin Whyte - 通讯作者:
Kevin Whyte
Lee Mosher的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lee Mosher', 18)}}的其他基金
Hierarchy Theory for Automorphism and Outer Automorphism Groups of Free Groups
自由群的自同构和外自同构群的层次理论
- 批准号:
1708361 - 财政年份:2017
- 资助金额:
$ 7.28万 - 项目类别:
Continuing Grant
Geometry and dynamics of outer automorphism groups of free groups
自由群外自同构群的几何与动力学
- 批准号:
1406376 - 财政年份:2014
- 资助金额:
$ 7.28万 - 项目类别:
Continuing Grant
The geometry of outer space: investigated through its analogy with Teichmuller space
外层空间的几何形状:通过与泰希米勒空间的类比进行研究
- 批准号:
1331129 - 财政年份:2013
- 资助金额:
$ 7.28万 - 项目类别:
Standard Grant
Geometry of the outer automorphism group of a free group
自由群外自同构群的几何
- 批准号:
1006248 - 财政年份:2010
- 资助金额:
$ 7.28万 - 项目类别:
Continuing Grant
Geometry of Mapping Class Groups and Outer Automorphism Groups
映射类群和外自同构群的几何
- 批准号:
0706799 - 财政年份:2007
- 资助金额:
$ 7.28万 - 项目类别:
Continuing Grant
Mathematical Sciences: Topics in Low-Dimensional Topology
数学科学:低维拓扑专题
- 批准号:
9204331 - 财政年份:1992
- 资助金额:
$ 7.28万 - 项目类别:
Continuing Grant
Mathematical Sciences: Dynamical Systems in 3-dimensional Topology
数学科学:3 维拓扑中的动力系统
- 批准号:
9002587 - 财政年份:1990
- 资助金额:
$ 7.28万 - 项目类别:
Standard Grant
相似国自然基金
Handbook of the Mathematics of the Arts and Sciences的中文翻译
- 批准号:12226504
- 批准年份:2022
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
SCIENCE CHINA: Earth Sciences
- 批准号:41224003
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21224005
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Information Sciences
- 批准号:61224002
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51224001
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
- 批准号:81024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21024806
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
- 批准号:41024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
Mathematical Sciences aiming at medical application of light propagation in biomedical tissues and related topics
针对生物医学组织中光传播的医学应用的数学科学及相关主题
- 批准号:
16H02155 - 财政年份:2016
- 资助金额:
$ 7.28万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
CBMS Regional Conference in the Mathematical Sciences - "Finite Morse Index Solutions and Related Topics" -Winter 2007
CBMS 数学科学区域会议 - “有限莫尔斯指数解决方案和相关主题” - 2007 年冬季
- 批准号:
0628079 - 财政年份:2007
- 资助金额:
$ 7.28万 - 项目类别:
Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences -Generalized Linear Mixed Models and Related Topics - June 8-12,1999
NSF/CBMS 数学科学区域会议 - 广义线性混合模型及相关主题 - 1999 年 6 月 8 日至 12 日
- 批准号:
9813374 - 财政年份:1999
- 资助金额:
$ 7.28万 - 项目类别:
Standard Grant
Mathematical Sciences: Symbolic Dynamics and Related Topics
数学科学:符号动力学及相关主题
- 批准号:
9706852 - 财政年份:1997
- 资助金额:
$ 7.28万 - 项目类别:
Continuing Grant
Mathematical Sciences: Topics in Fluid Dynamics
数学科学:流体动力学主题
- 批准号:
9622735 - 财政年份:1996
- 资助金额:
$ 7.28万 - 项目类别:
Standard Grant
Mathematical Sciences: Topics in Nonparametric Analysis and Model Building
数学科学:非参数分析和模型构建主题
- 批准号:
9625777 - 财政年份:1996
- 资助金额:
$ 7.28万 - 项目类别:
Continuing Grant
Mathematical Sciences: Mathematical Topics in Combustion
数学科学:燃烧中的数学主题
- 批准号:
9600103 - 财政年份:1996
- 资助金额:
$ 7.28万 - 项目类别:
Continuing Grant
Mathematical Sciences: Topics in Model Theory
数学科学:模型论主题
- 批准号:
9696268 - 财政年份:1996
- 资助金额:
$ 7.28万 - 项目类别:
Continuing Grant
Mathematical Sciences: Diffusion Processes and Related Topics
数学科学:扩散过程及相关主题
- 批准号:
9625782 - 财政年份:1996
- 资助金额:
$ 7.28万 - 项目类别:
Continuing grant
Mathematical Sciences: Topics in Commutative Algebra
数学科学:交换代数主题
- 批准号:
9622224 - 财政年份:1996
- 资助金额:
$ 7.28万 - 项目类别:
Standard Grant














{{item.name}}会员




