Mathematical Sciences: Conformal Geometry and Geometric Function Theory

数学科学:共形几何和几何函数论

基本信息

  • 批准号:
    9204378
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1992
  • 资助国家:
    美国
  • 起止时间:
    1992-07-01 至 1994-06-30
  • 项目状态:
    已结题

项目摘要

This project continues mathematical research into problems of complex function theory, concentrating on geometric ideas which use differential geometric tools. The common feature in the investigation of all these problems is the use of conformal metrics, especially the hyperbolic, euclidean and spherical metrics. One is interested in obtaining information about one conformal geometry, say hyperbolic, in terms of another conformal (usually euclidean) geometry or in studying analytic functions viewed as mappings from one geometry to another. For instance, from this perspective, Bloch functions are precisely those analytic functions from hyperbolic to euclidean geometry with bounded distortion. Problems of interest include two-point comparison theorems for euclidean and hyperbolic geometry, generalized convexity-concavity properties of the hyperbolic metric, Bloch and linearly invariant functions, quasi-invariant domain constants, and a study of various conformal metrics and distance functions defined by families of holomorphic or harmonic functions. Complex function theory encompasses the study of differentiable functions of a complex variable and related classes of functions such as harmonic functions and quasiconformal mappings. The subject is highly geometric; many of the problems concern the properties of various sets under transform by functions from one of the above classes. Applications of the theory to potential theory and fluid dynamics are standard in engineering circles.
This project continues mathematical research into problems of complex function theory, concentrating on geometric ideas which use differential geometric tools. The common feature in the investigation of all these problems is the use of conformal metrics, especially the hyperbolic, euclidean and spherical metrics. One is interested in obtaining information about one conformal geometry, say hyperbolic, in terms of another conformal (usually euclidean) geometry or in studying analytic functions viewed as mappings from one geometry to another. For instance, from this perspective, Bloch functions are precisely those analytic functions from hyperbolic to euclidean geometry with bounded distortion. Problems of interest include two-point comparison theorems for euclidean and hyperbolic geometry, generalized convexity-concavity properties of the hyperbolic metric, Bloch and linearly invariant functions, quasi-invariant domain constants, and a study of various conformal metrics and distance functions defined by families of holomorphic or harmonic functions. Complex function theory encompasses the study of differentiable functions of a complex variable and related classes of functions such as harmonic functions and quasiconformal mappings. The subject is highly geometric; many of the problems concern the properties of various sets under transform by functions from one of the above classes. Applications of the theory to potential theory and fluid dynamics are standard in engineering circles.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

C. David Minda其他文献

Bloch constants for meromorphic functions
亚纯函数的布洛赫常数
  • DOI:
    10.1007/bf01214983
  • 发表时间:
    1982
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. David Minda
  • 通讯作者:
    C. David Minda
Fixed points of analytic self-mappings of Riemann surfaces
  • DOI:
    10.1007/bf01507293
  • 发表时间:
    1979-12-01
  • 期刊:
  • 影响因子:
    0.600
  • 作者:
    C. David Minda
  • 通讯作者:
    C. David Minda
Invariant metrics on riemann surfaces
  • DOI:
    10.1007/bf02803329
  • 发表时间:
    1981-12-01
  • 期刊:
  • 影响因子:
    0.900
  • 作者:
    C. David Minda;Raimo Näkki
  • 通讯作者:
    Raimo Näkki

C. David Minda的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('C. David Minda', 18)}}的其他基金

Mathematical Sciences: Topics in Geometric Function Theory
数学科学:几何函数论专题
  • 批准号:
    9401504
  • 财政年份:
    1994
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Topics in Geometric Function Theory
数学科学:几何函数论专题
  • 批准号:
    9008051
  • 财政年份:
    1990
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical Sciences: Differential Geometry and Function Theory
数学科学:微分几何和函数论
  • 批准号:
    8801439
  • 财政年份:
    1988
  • 资助金额:
    --
  • 项目类别:
    Continuing grant
Mathematical Sciences: Differential-Geometric Methods in Geometric Function Theory
数学科学:几何函数理论中的微分几何方法
  • 批准号:
    8521158
  • 财政年份:
    1986
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
An Analog of Extremal Length (Mathematical Sciences)
极值长度的模拟(数学科学)
  • 批准号:
    8201131
  • 财政年份:
    1982
  • 资助金额:
    --
  • 项目类别:
    Continuing grant
A Conformally Invariant Prime End Metric
共形不变素端度量
  • 批准号:
    7902531
  • 财政年份:
    1979
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Conformally Invariant Metrics and the Aumann-Caratheodory Constant
共形不变度量和 Aumann-Caratheodory 常数
  • 批准号:
    7802662
  • 财政年份:
    1978
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Extremal Length and Reproducing Differentials
极值长度和再现差异
  • 批准号:
    7308877
  • 财政年份:
    1973
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似国自然基金

Handbook of the Mathematics of the Arts and Sciences的中文翻译
  • 批准号:
    12226504
  • 批准年份:
    2022
  • 资助金额:
    20.0 万元
  • 项目类别:
    数学天元基金项目
SCIENCE CHINA: Earth Sciences
  • 批准号:
    41224003
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Environmental Sciences
  • 批准号:
    21224005
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Information Sciences
  • 批准号:
    61224002
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51224001
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Environmental Sciences
  • 批准号:
    21024806
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
  • 批准号:
    81024803
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
  • 批准号:
    41024801
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51024803
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Mathematical Sciences: Harmonic Measure, Conformal Mappings, and Geometric Measure Theory
数学科学:调和测度、共形映射和几何测度理论
  • 批准号:
    9706875
  • 财政年份:
    1997
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical Sciences: Vertex Operators Algebras, Conformal Field Theories, and Geometry
数学科学:顶点算子代数、共形场论和几何
  • 批准号:
    9622961
  • 财政年份:
    1996
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical Sciences: Conformal Field Theory and Its Generalizations
数学科学:共形场论及其推广
  • 批准号:
    9627782
  • 财政年份:
    1996
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Generalized Theta Functions, Hypergeometric and Conformal Field Theory
数学科学:广义 Theta 函数、超几何和共形场论
  • 批准号:
    9696197
  • 财政年份:
    1996
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical Sciences: Algebraic Topology of Algebraic Varieties, Conformal Field Theory
数学科学:代数簇的代数拓扑、共形场论
  • 批准号:
    9625768
  • 财政年份:
    1996
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical Sciences: Representations of Affine Lie Algebras and Quantum Groups and Conformal Field Theory
数学科学:仿射李代数和量子群的表示以及共形场论
  • 批准号:
    9696028
  • 财政年份:
    1995
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical Sciences: Generalized Theta Functions, Hypergeometric and Conformal Field Theory
数学科学:广义 Theta 函数、超几何和共形场论
  • 批准号:
    9504884
  • 财政年份:
    1995
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical Sciences: Research in Conformal Mapping
数学科学:共形映射研究
  • 批准号:
    9400733
  • 财政年份:
    1994
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical Sciences: Research on Conformal Field Theory
数学科学:共形场论研究
  • 批准号:
    9400841
  • 财政年份:
    1994
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Geometric Conformal Field Theories, Mirror Symmetry, and Algebraic Geometry
数学科学:几何共形场论、镜像对称和代数几何
  • 批准号:
    9401447
  • 财政年份:
    1994
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了