Mathematical Sciences: RUI: Graph Theory and the Complexity of Graph Algorithms

数学科学:RUI:图论和图算法的复杂性

基本信息

  • 批准号:
    9206991
  • 负责人:
  • 金额:
    $ 5.64万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1992
  • 资助国家:
    美国
  • 起止时间:
    1992-06-15 至 1995-05-31
  • 项目状态:
    已结题

项目摘要

This is an award made under the RUI program. Professor Schmeichel will study the structure of graphs in terms of the length of the cycles the graph contains and to examine the algorithmic complexity of various coloring and communication problems on graphs. Graph Theory goes back perhaps two hundred years, but only in the last half-century has the field become an active, fertile, and flourishing branch of mathematics. A graph is a network of lines ("edges") joining points ("vertices"), thus the language of graphs becomes a natural way of describing interrelationships among separated objects. Graph Theory figures most prominently as an essential tool in Communications Theory and Computer Science.
这是RUI计划下的一个奖项。 教授 Schmeichel将研究图的结构, 图中包含的周期的长度,并检查 各种着色和通信的算法复杂度 图上的问题。 图论可以追溯到200年前,但只有 在过去的半个世纪里,这个领域已经成为一个活跃的,肥沃的, 数学的一个繁荣的分支。 图是一个网络, 线(“边缘”)连接点(“顶点”),因此语言的 图表成为描述相互关系的自然方式 分离的物体之间。 图论是最重要的 作为通信理论和计算机的重要工具, 科学

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Edward Schmeichel其他文献

Toughness in Graphs – A Survey
  • DOI:
    10.1007/s00373-006-0649-0
  • 发表时间:
    2006-04-01
  • 期刊:
  • 影响因子:
    0.600
  • 作者:
    Douglas Bauer;Hajo Broersma;Edward Schmeichel
  • 通讯作者:
    Edward Schmeichel

Edward Schmeichel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Edward Schmeichel', 18)}}的其他基金

Mathematical Sciences: Graph Theory and The Complexity of Graph Algorithms
数学科学:图论和图算法的复杂性
  • 批准号:
    8904520
  • 财政年份:
    1989
  • 资助金额:
    $ 5.64万
  • 项目类别:
    Continuing Grant

相似国自然基金

Handbook of the Mathematics of the Arts and Sciences的中文翻译
  • 批准号:
    12226504
  • 批准年份:
    2022
  • 资助金额:
    20.0 万元
  • 项目类别:
    数学天元基金项目
SCIENCE CHINA: Earth Sciences
  • 批准号:
    41224003
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Environmental Sciences
  • 批准号:
    21224005
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Information Sciences
  • 批准号:
    61224002
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51224001
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Environmental Sciences
  • 批准号:
    21024806
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
  • 批准号:
    81024803
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
  • 批准号:
    41024801
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51024803
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Mathematical Sciences: "RUI: Magnetohydrostatic Problems Relevant to Current Sheets and Heating of the Solar Corona"
数学科学:“RUI:与电流片和日冕加热相关的磁流体静力问题”
  • 批准号:
    9622923
  • 财政年份:
    1996
  • 资助金额:
    $ 5.64万
  • 项目类别:
    Standard Grant
Mathematical Sciences\RUI: Problems in Algebra: Group Actions on Trees and Buildings
数学科学RUI:代数问题:树木和建筑物的群作用
  • 批准号:
    9623282
  • 财政年份:
    1996
  • 资助金额:
    $ 5.64万
  • 项目类别:
    Standard Grant
Mathematical Sciences: RUI Inverse Problems in Thermal Imaging
数学科学:热成像中的 RUI 反问题
  • 批准号:
    9623279
  • 财政年份:
    1996
  • 资助金额:
    $ 5.64万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: RUI: Minimal Surfaces, Clusters, and Singular Geometry
数学科学:RUI:最小曲面、簇和奇异几何
  • 批准号:
    9625641
  • 财政年份:
    1996
  • 资助金额:
    $ 5.64万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: RUI: Topological Embeddings in Piecewise Linear Manifolds
数学科学:RUI:分段线性流形中的拓扑嵌入
  • 批准号:
    9626221
  • 财政年份:
    1996
  • 资助金额:
    $ 5.64万
  • 项目类别:
    Standard Grant
RUI: Mathematical Sciences: Spherical Characters on P-adic Coset Spaces and the Relative Trace Formula
RUI:数学科学:P-进陪集空间上的球面特征和相对迹公式
  • 批准号:
    9623125
  • 财政年份:
    1996
  • 资助金额:
    $ 5.64万
  • 项目类别:
    Standard Grant
Mathematical Sciences: RUI: Mathematical Modeling of Hematopoiesis and Cell Cycles in Escherichia coli
数学科学:RUI:大肠杆菌造血和细胞周期的数学模型
  • 批准号:
    9627047
  • 财政年份:
    1996
  • 资助金额:
    $ 5.64万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: RUI: Dupin Submanifolds
数学科学:RUI:杜宾子流形
  • 批准号:
    9504535
  • 财政年份:
    1995
  • 资助金额:
    $ 5.64万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: RUI: Geometric Tomography
数学科学:RUI:几何断层扫描
  • 批准号:
    9501289
  • 财政年份:
    1995
  • 资助金额:
    $ 5.64万
  • 项目类别:
    Standard Grant
Mathematical Sciences: RUI: Spaces of Holomorphic Functions and Their Operators
数学科学:RUI:全纯函数空间及其运算符
  • 批准号:
    9502983
  • 财政年份:
    1995
  • 资助金额:
    $ 5.64万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了