Nonsmooth Equations Approach to Optimization and Variational Inequality: Theory and Computation
非光滑方程优化方法和变分不等式:理论与计算
基本信息
- 批准号:9213739
- 负责人:
- 金额:$ 16.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1993
- 资助国家:美国
- 起止时间:1993-03-15 至 1996-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project investigates the theory and computation of optimization problems and variational inequalities based on their equivalent formulation as a of nonsmooth equations. On the theoretical side, the goal is to gain, through the development of a comprehensive theory nonsmooth equations via their approximations, a better understanding of the sensitivity, stability, and other instrinsic properties of these mathematical programs. On the computational side, the goal is to develop, relying on generalizations of the classical Newton methods for smooth equations to the nonsmooth context, some robust, globally, locally quadratically convergent algorithms for solving these mathematical programs. The research is built on work in recent years which has demonstrated the fruitfulness of this nonsmooth-equations approach to variational inequalities, complementarity problems, and nonlinear programs.
本计画将探讨最佳化问题与变分不等式的理论与计算,并将其等价公式化为 非光滑方程 在理论方面,目标是通过发展一个全面的理论 非光滑方程通过他们的近似,更好地理解灵敏度,稳定性,和其他的数学程序的内在属性。 在计算方面,我们的目标是发展,依靠推广的经典牛顿方法光滑方程的非光滑背景下,一些强大的,全球性的, 局部二次收敛算法来解决这些数学规划。 这项研究是建立在近年来的工作已经证明了这种非光滑方程的方法,变分不等式,互补问题和非线性规划的成果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jong-Shi Pang其他文献
An equivalence between two algorithms for quadratic programming
- DOI:
10.1007/bf01589342 - 发表时间:
1981-12-01 - 期刊:
- 影响因子:2.500
- 作者:
Jong-Shi Pang - 通讯作者:
Jong-Shi Pang
Correction to: On the pervasiveness of difference-convexity in optimization and statistics
- DOI:
10.1007/s10107-019-01378-z - 发表时间:
2019-03-01 - 期刊:
- 影响因子:2.500
- 作者:
Maher Nouiehed;Jong-Shi Pang;Meisam Razaviyayn - 通讯作者:
Meisam Razaviyayn
Two-stage parallel iterative methods for the symmetric linear complementarity problem
- DOI:
10.1007/bf02186474 - 发表时间:
1988-12-01 - 期刊:
- 影响因子:4.500
- 作者:
Jong-Shi Pang;Jiann-Min Yang - 通讯作者:
Jiann-Min Yang
Differential variational inequalities
- DOI:
10.1007/s10107-006-0052-x - 发表时间:
2007-01-24 - 期刊:
- 影响因子:2.500
- 作者:
Jong-Shi Pang;David E. Stewart - 通讯作者:
David E. Stewart
Treatment learning with Gini constraints by Heaviside composite optimization and a progressive method
- DOI:
10.1007/s10589-025-00706-8 - 发表时间:
2025-06-21 - 期刊:
- 影响因子:2.000
- 作者:
Yue Fang;Junyi Liu;Jong-Shi Pang - 通讯作者:
Jong-Shi Pang
Jong-Shi Pang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jong-Shi Pang', 18)}}的其他基金
Conference on Nonconvex Statistical Learning, University of Southern California, May 26-27, 2017
非凸统计学习会议,南加州大学,2017 年 5 月 26-27 日
- 批准号:
1719635 - 财政年份:2017
- 资助金额:
$ 16.41万 - 项目类别:
Standard Grant
BIGDATA: Collaborative Research: F: Foundations of Nonconvex Problems in BigData Science and Engineering: Models, Algorithms, and Analysis
BIGDATA:协作研究:F:大数据科学与工程中非凸问题的基础:模型、算法和分析
- 批准号:
1632971 - 财政年份:2016
- 资助金额:
$ 16.41万 - 项目类别:
Standard Grant
Collaborative Research: Nash Equilibrium Problems under Uncertainty
合作研究:不确定性下的纳什均衡问题
- 批准号:
1538605 - 财政年份:2015
- 资助金额:
$ 16.41万 - 项目类别:
Standard Grant
BECS Collaborative Research: Modeling the Dynamics of Traffic User Equilibria Using Differential Variational Inequalities
BECS 协作研究:使用微分变分不等式对交通用户均衡动态进行建模
- 批准号:
1412544 - 财政年份:2013
- 资助金额:
$ 16.41万 - 项目类别:
Standard Grant
Collaborative Research: Binary Constrained Convex Quadratic Programs with Complementarity Constraints and Extensions
协作研究:具有互补约束和扩展的二元约束凸二次规划
- 批准号:
1333902 - 财政年份:2013
- 资助金额:
$ 16.41万 - 项目类别:
Standard Grant
Collaborative Research: Binary Constrained Convex Quadratic Programs with Complementarity Constraints and Extensions
协作研究:具有互补约束和扩展的二元约束凸二次规划
- 批准号:
1402052 - 财政年份:2013
- 资助金额:
$ 16.41万 - 项目类别:
Standard Grant
BECS Collaborative Research: Modeling the Dynamics of Traffic User Equilibria Using Differential Variational Inequalities
BECS 协作研究:使用微分变分不等式对交通用户均衡动态进行建模
- 批准号:
1024984 - 财政年份:2010
- 资助金额:
$ 16.41万 - 项目类别:
Standard Grant
Analysis and Control of Complementary Systems
互补系统的分析与控制
- 批准号:
0754374 - 财政年份:2007
- 资助金额:
$ 16.41万 - 项目类别:
Standard Grant
Extended Nash Equilibria and Their Applications
扩展纳什均衡及其应用
- 批准号:
0802022 - 财政年份:2007
- 资助金额:
$ 16.41万 - 项目类别:
Standard Grant
Extended Nash Equilibria and Their Applications
扩展纳什均衡及其应用
- 批准号:
0516023 - 财政年份:2005
- 资助金额:
$ 16.41万 - 项目类别:
Standard Grant
相似海外基金
Bi-parameter paracontrolled approach to singular stochastic wave equations
奇异随机波动方程的双参数参数控制方法
- 批准号:
EP/Y033507/1 - 财政年份:2024
- 资助金额:
$ 16.41万 - 项目类别:
Research Grant
Weighted semigroup approach for Fokker-Planck-Kolmogorov equations
Fokker-Planck-Kolmogorov 方程的加权半群方法
- 批准号:
517982119 - 财政年份:2023
- 资助金额:
$ 16.41万 - 项目类别:
WBP Fellowship
Mathematical approach to 2 phase problem in unbounded domains and an extension of its approach to the theory of quasilinear parabolic equations
无界域中两相问题的数学方法及其对拟线性抛物型方程理论的扩展
- 批准号:
22H01134 - 财政年份:2022
- 资助金额:
$ 16.41万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Integrability of nonlinear partial difference and functional equations: a singularity and entropy based approach
非线性偏差和函数方程的可积性:基于奇点和熵的方法
- 批准号:
22H01130 - 财政年份:2022
- 资助金额:
$ 16.41万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
A new spectral method approach for singular integral equations
奇异积分方程的新谱法
- 批准号:
RGPIN-2017-05514 - 财政年份:2022
- 资助金额:
$ 16.41万 - 项目类别:
Discovery Grants Program - Individual
Operator-theoretic approach to problems of Analysis and Partial Differential Equations
分析和偏微分方程问题的算子理论方法
- 批准号:
RGPIN-2017-05567 - 财政年份:2022
- 资助金额:
$ 16.41万 - 项目类别:
Discovery Grants Program - Individual
Stability of coherent structures in evolutionary partial differential equations: a geometric approach
演化偏微分方程中相干结构的稳定性:几何方法
- 批准号:
RGPIN-2017-04259 - 财政年份:2022
- 资助金额:
$ 16.41万 - 项目类别:
Discovery Grants Program - Individual
Peakon integrable nonlinear equations and related approximation problems: the distributional approach.
Peakon 可积非线性方程和相关逼近问题:分布方法。
- 批准号:
RGPIN-2019-04051 - 财政年份:2022
- 资助金额:
$ 16.41万 - 项目类别:
Discovery Grants Program - Individual
Polynomial Pell's equations and Hankel determinants: A continued fraction approach
多项式佩尔方程和汉克尔行列式:连分数法
- 批准号:
565819-2021 - 财政年份:2021
- 资助金额:
$ 16.41万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Stability of coherent structures in evolutionary partial differential equations: a geometric approach
演化偏微分方程中相干结构的稳定性:几何方法
- 批准号:
RGPIN-2017-04259 - 财政年份:2021
- 资助金额:
$ 16.41万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




