Path Integral Theory of Electron Transfer in Chemical and Biological Systems
化学和生物系统中电子转移的路径积分理论
基本信息
- 批准号:9216221
- 负责人:
- 金额:$ 12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1993
- 资助国家:美国
- 起止时间:1993-01-01 至 1996-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Dr. Chi Ho Mak is supported by a grant from the Theoretical and Computational Chemistry Program to study electron transfer reactions occurring in various chemical and biological systems. Fully quantum mechanical theories will be used to study nuclear tunneling as manifested in the isotope effect in aqueous electron transfer reactions in the inverted region and highly nonadiabatic reactions in the normal region. The mechanism of coherence-mediated transfers involving a possibly highly delocalized electron will be investigated by direct simulations to understand the spectroscopic properties of Creutz-Taube compounds. Finally, questions concerning the possible role of coherence and the effects of an intermediate state in the photosynthetic reaction center will be addressed by fully dynamical quantum Monte Carlo methods. %%% Electron transfer reactions are ubiquitous in many chemical and biological processes. Underlying all oxidation reduction reactions is a process in which an electron is rapidly transferred from one chemical species to another. One very important electron transfer system occurs in the photosynthetic reaction center of plants and some bacteria. Since the electron is a very light particle these transfer processes must be treated using quantum theory to account for the nonclassical tunneling which takes place. Mak's research will help to elucidate the quantum mechanical nature of this tunneling electron transfer process.
Chi Ho Mak 博士获得理论和计算化学项目的资助,用于研究各种化学和生物系统中发生的电子转移反应。 全量子力学理论将用于研究核隧道效应,如反转区域中水电子转移反应中的同位素效应和正常区域中的高度非绝热反应中所体现的核隧道效应。 将通过直接模拟研究涉及可能高度离域电子的相干介导的转移机制,以了解 Creutz-Taube 化合物的光谱特性。 最后,有关光合反应中心相干性的可能作用和中间态影响的问题将通过全动态量子蒙特卡罗方法得到解决。 %%% 电子转移反应在许多化学和生物过程中普遍存在。 所有氧化还原反应的基础是电子从一种化学物质快速转移到另一种化学物质的过程。 植物和一些细菌的光合反应中心存在一种非常重要的电子传递系统。 由于电子是非常轻的粒子,因此必须使用量子理论来处理这些传输过程,以解释所发生的非经典隧道效应。 麦的研究将有助于阐明这种隧道电子转移过程的量子力学本质。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chi Mak其他文献
Chi Mak的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chi Mak', 18)}}的其他基金
Modeling the Molecular Forces Driving the Structure, Folding, and Misfolding of Nucleic Acids
模拟驱动核酸结构、折叠和错误折叠的分子力
- 批准号:
1664801 - 财政年份:2017
- 资助金额:
$ 12万 - 项目类别:
Standard Grant
Stochastic Decomposition: A New Monte Carlo Algorithm for High-Efficiency Sampling and Applications to Quantum and Classical Problems
随机分解:一种新的高效采样蒙特卡罗算法及其在量子和经典问题中的应用
- 批准号:
0713981 - 财政年份:2007
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
New Approaches to Path Integral Simulations of Condensed-Phase Quantum Dynamics
凝聚相量子动力学路径积分模拟的新方法
- 批准号:
9970766 - 财政年份:1999
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
Path Integral Theory of Electron Transport in Chemical and Biological Systems
化学和生物系统中电子传输的路径积分理论
- 批准号:
9528121 - 财政年份:1996
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
相似国自然基金
用CLEAN和直接解调方法分析INTEGRAL数据
- 批准号:10603004
- 批准年份:2006
- 资助金额:35.0 万元
- 项目类别:青年科学基金项目
相似海外基金
The theory of osicllatory integral operartors and its application to the Feynman path integral of quntum field theory
振荡积分算子理论及其在量子场论费曼路径积分中的应用
- 批准号:
26400161 - 财政年份:2014
- 资助金额:
$ 12万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
On the theory of the oscillatory integral operators and its applications to the Feyman path integral for the field theory
振荡积分算子理论及其在场论费曼路径积分中的应用
- 批准号:
23540195 - 财政年份:2011
- 资助金额:
$ 12万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The theory of oscillatory integral operator and its application to the Feynman path integral
振荡积分算子理论及其在费曼路径积分中的应用
- 批准号:
19540175 - 财政年份:2007
- 资助金额:
$ 12万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The theory of the pseudo-differential operators and its applications to the theory of the Feynman path integral
伪微分算子理论及其在费曼路径积分理论中的应用
- 批准号:
16540145 - 财政年份:2004
- 资助金额:
$ 12万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The application of the theory of the pseudo-diffrential operators to the Feynman path integral
伪微分算子理论在费曼路径积分中的应用
- 批准号:
13640161 - 财政年份:2001
- 资助金额:
$ 12万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
On the application of the quantum mechanical path integral to field theory
论量子力学路径积分在场论中的应用
- 批准号:
8413-1994 - 财政年份:1997
- 资助金额:
$ 12万 - 项目类别:
Subatomic Physics Envelope - Individual
Path Integral Theory of Electron Transport in Chemical and Biological Systems
化学和生物系统中电子传输的路径积分理论
- 批准号:
9528121 - 财政年份:1996
- 资助金额:
$ 12万 - 项目类别:
Continuing Grant
On the application of the quantum mechanical path integral to field theory
论量子力学路径积分在场论中的应用
- 批准号:
8413-1994 - 财政年份:1996
- 资助金额:
$ 12万 - 项目类别:
Subatomic Physics Envelope - Individual
On the application of the quantum mechanical path integral to field theory
论量子力学路径积分在场论中的应用
- 批准号:
8413-1994 - 财政年份:1995
- 资助金额:
$ 12万 - 项目类别:
Subatomic Physics Envelope - Individual
On the application of the quantum mechanical path integral to field theory
论量子力学路径积分在场论中的应用
- 批准号:
8413-1994 - 财政年份:1994
- 资助金额:
$ 12万 - 项目类别:
Subatomic Physics Envelope - Individual














{{item.name}}会员




