The application of the theory of the pseudo-diffrential operators to the Feynman path integral

伪微分算子理论在费曼路径积分中的应用

基本信息

  • 批准号:
    13640161
  • 负责人:
  • 金额:
    $ 2.18万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2001
  • 资助国家:
    日本
  • 起止时间:
    2001 至 2003
  • 项目状态:
    已结题

项目摘要

The aim of our project was to give the rigorous meaning to the Feynman path integral usually used in physics, which is defined by the method of the time-slicing approximation determined through broken line paths. In detail, we study : (1)We show the convergence of the phase space Feynman path integral of the functional as the discretization parameter tends to zero and give its expression in terms of the operator notation. (2)We show the existence of the generating functional Z(J) of the source J in quantum mechanics and also quantum free field theory. Next we show the functional differentiability of Z(J) in J and that its derivative gives the correlation function. (3)We give the mathematical proof to the perturbation theory of the path integral.Our aim has been completed except for the study of Z(J) of quantum free field theory and (3). First, we studied the convergence of the phase space Feynman path integral that is usually used in physics. We proved that its path integral converges … More to the solution of the corresponding Schrodinger equation in L^2 space. Next, we proved the convergence of the phase space path integral not only in L^2 space but also in the generalized Sobolev spaces B^a. By means of this result we studied the convergence of the phase space path integral of the functional II^N_<j=1> q(t_j)p(t_j). We gave their expressions in terms of the operator notation and showed that these path integrals give correlation functions, the canonical commutator relation and etc. In addition, we generalized this result to the phase space path integral of the functional II^N_<J=1> z_j(q(t_j),p(t_j)). We gave the necessary and sufficient condition on z_j(x, p) (j=1,2,【triple bond】,N) for this phase space path integral to be convergent. We also gave the expression in terms of the operator notation when the path integral was convergent. From this result we could give the rigorous proofs of the heuristic results in Feynman's celebrated paper 1948. Next, we showed the existence of the generating functional Z(J)f (f∈B^a) for any J∈X, where X is the set of all R^n-valued continuous functions on [O, T]. We also proved that the functional Z(J)f : X→B^a is Frechet differentiable in J and its Frechet derivatives give correlation functions. The paper on this result is in preparation. In relation to our project each investigator studied the integral operator of the oscillatory type, the ground state transition of Bose field, and BMO space and Besov space and its applications to the differential equations Less
The aim of our project was to give the rigorous meaning to the Feynman path integral usually used in physics, which is defined by the method of the time-slicing approximation determined through broken line paths. In detail, we study : (1)We show the convergence of the phase space Feynman path integral of the functional as the discretization parameter tends to zero and give its expression in terms of the operator notation. (2)We show the existence of the generating functional Z(J) of the source J in quantum mechanics and also quantum free field theory. Next we show the functional differentiability of Z(J) in J and that its derivative gives the correlation function. (3)We give the mathematical proof to the perturbation theory of the path integral.Our aim has been completed except for the study of Z(J) of quantum free field theory and (3). First, we studied the convergence of the phase space Feynman path integral that is usually used in physics. We proved that its path integral converges … More to the solution of the corresponding Schrodinger equation in L^2 space. Next, we proved the convergence of the phase space path integral not only in L^2 space but also in the generalized Sobolev spaces B^a. By means of this result we studied the convergence of the phase space path integral of the functional II^N_<j=1> q(t_j)p(t_j). We gave their expressions in terms of the operator notation and showed that these path integrals give correlation functions, the canonical commutator relation and etc. In addition, we generalized this result to the phase space path integral of the functional II^N_<J=1> z_j(q(t_j),p(t_j)). We gave the necessary and sufficient condition on z_j(x, p) (j=1,2,【triple bond】,N) for this phase space path integral to be convergent. We also gave the expression in terms of the operator notation when the path integral was convergent. From this result we could give the rigorous proofs of the heuristic results in Feynman's celebrated paper 1948. Next, we showed the existence of the generating functional Z(J)f (f∈B^a) for any J∈X, where X is the set of all R^n-valued continuous functions on [O, T]. We also proved that the functional Z(J)f : X→B^a is Frechet differentiable in J and its Frechet derivatives give correlation functions. The paper on this result is in preparation. In relation to our project each investigator studied the integral operator of the oscillatory type, the ground state transition of Bose field, and BMO space and Besov space and its applications to the differential equations Less

项目成果

期刊论文数量(29)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Y.Morimoto, C.J.Xu: "Logarithmic Sobolev inequality and semi-linear Dirichlet problem for infinitely degenerate elliptic operators"Asterisque, Soc.Math.France Inst.Henri Poincare. 284. 245-264 (2003)
Y.Morimoto、C.J.Xu:“无限简并椭圆算子的对数 Sobolev 不等式和半线性 Dirichlet 问题”Asterisque,Soc.Math.France Inst.Henri Poincare。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
H.Kozono, T.ogawa, Y.Taniuchi: "Navier Stokes equations in the Besov space L^∞-and BHO"Kyuohu J.Math.. 57・2. 303-324 (2003)
H.Kozono、T.okawa、Y.Taniuchi:“贝索夫空间 L^∞-和 BHO 中的纳维斯托克斯方程”Kyuohu J.Math.. 57・2 (2003)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
M.Hirokawa: "Ground state transition for two level system coupled with pose field"Physics Letters A. 294. 13-18 (2002)
M.Hirokawa:“与位姿场耦合的两能级系统的基态转换”Physics Letters A. 294. 13-18 (2002)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
M.Hirokawa: "Ground state transition for two level system coupled with Bose field"Physics letter A. 294. 13-18 (2002)
M.Hirokawa:“与玻色场耦合的两能级系统的基态转变”物理学信件 A. 294. 13-18 (2002)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
W.Ichinose: "On convergence of the Feynman path integral in phase space"Osaka J.Math.. 39. 181-208 (2002)
W.Ichinose:“论相空间中费曼路径积分的收敛性”Osaka J.Math.. 39. 181-208 (2002)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ICHINOSE Wataru其他文献

ICHINOSE Wataru的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ICHINOSE Wataru', 18)}}的其他基金

The efficient transformation from cyclic peptide to lead ligand
环肽向先导配体的高效转化
  • 批准号:
    15K18897
  • 财政年份:
    2015
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
The theory of osicllatory integral operartors and its application to the Feynman path integral of quntum field theory
振荡积分算子理论及其在量子场论费曼路径积分中的应用
  • 批准号:
    26400161
  • 财政年份:
    2014
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Synthesis and Composed Functions of Multidomain Oligomers with Double-helix Structure
双螺旋结构多域低聚物的合成及复合功能
  • 批准号:
    25860002
  • 财政年份:
    2013
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
On the theory of the oscillatory integral operators and its applications to the Feyman path integral for the field theory
振荡积分算子理论及其在场论费曼路径积分中的应用
  • 批准号:
    23540195
  • 财政年份:
    2011
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The theory of oscillatory integral operator and its application to the Feynman path integral
振荡积分算子理论及其在费曼路径积分中的应用
  • 批准号:
    19540175
  • 财政年份:
    2007
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The theory of the pseudo-differential operators and its applications to the theory of the Feynman path integral
伪微分算子理论及其在费曼路径积分理论中的应用
  • 批准号:
    16540145
  • 财政年份:
    2004
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Application of the pseudo-differential operotous to the Feynmon path
伪微分运算在Feynmon路径中的应用
  • 批准号:
    10640176
  • 财政年份:
    1998
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Accurately predictive quantum chemistry based on the exact Schroedinger equation and comprehensive chemical principles
基于精确的薛定谔方程和综合化学原理的准确预测量子化学
  • 批准号:
    16H02257
  • 财政年份:
    2016
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Solving the Schroedinger Equation: Accurate solutions by the integration method and the sampling method.
求解薛定谔方程:通过积分法和采样法精确求解。
  • 批准号:
    16K17864
  • 财政年份:
    2016
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Analysis of nonlinear Schroedinger equation with electromagnetic potentials
具有电磁势的非线性薛定谔方程分析
  • 批准号:
    22740095
  • 财政年份:
    2010
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Fast fourier transform applied to solution of time dependent schroedinger equation
快速傅里叶变换应用于求解时变薛定谔方程
  • 批准号:
    383730-2009
  • 财政年份:
    2009
  • 资助金额:
    $ 2.18万
  • 项目类别:
    University Undergraduate Student Research Awards
Structure of Solutions of the Time Dependent Schroedinger Equation and of Certain Classes of Evolution Nonlinear PDEs
瞬态薛定谔方程和某些类演化非线性偏微分方程解的结构
  • 批准号:
    0600369
  • 财政年份:
    2006
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Continuing grant
Programming Paradigms, Tools and Algorithms for the Spectral Solution of the Electronic Schroedinger Equation on Non-Uniform Memory Parallel Processors
非均匀存储并行处理器上电子薛定谔方程谱解的编程范式、工具和算法
  • 批准号:
    LP0347178
  • 财政年份:
    2003
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Linkage Projects
Singularity of the fundamental solution of Schroedinger equation
薛定谔方程基本解的奇异性
  • 批准号:
    15540187
  • 财政年份:
    2003
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The Semiclassical Limit of the Focusing Nonlinear Schroedinger Equation
聚焦非线性薛定谔方程的半经典极限
  • 批准号:
    0103909
  • 财政年份:
    2001
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Continuing Grant
Monte carlo simulation of schroedinger equation
薛定谔方程的蒙特卡罗模拟
  • 批准号:
    8751-1993
  • 财政年份:
    1996
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Discovery Grants Program - Individual
Monte carlo simulation of schroedinger equation
薛定谔方程的蒙特卡罗模拟
  • 批准号:
    8751-1993
  • 财政年份:
    1995
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了