Mathematical Sciences: Conference on Zeta Functions in Number Theory and Geometric Analysis
数学科学:数论和几何分析中的 Zeta 函数会议
基本信息
- 批准号:9224213
- 负责人:
- 金额:$ 0.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1993
- 资助国家:美国
- 起止时间:1993-05-15 至 1994-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Zeta functions play a well-recognized role in many areas of mathematics. In 1992-93, the Japan-US Mathematical Institute at Johns Hopkins University is hosting a special year on zeta functions in number theory and in geometric analysis. This award is for a conference to be held March 29- April 3,1993, to bring together researchers in these subjects. Visitors to Hopkins during Spring 1993 in areas related to number theoretic zeta functions include A. Gyoja, T. Kimura, D. Meuser, F. Sato, and T. Yano. Visitors in areas related to the geometric analysis aspects include T. Adachi, A. Katsuda, Y. Petridis, and T. Sunada. One connection between these two areas is the study of zeta functions associated to quotients of symmetric spaces, e.g. in the spectral theory of automorphic forms. Another is the study of the fine structure of the zeroes of various L-functions, which resembles that of the eigen-values of various Laplacians. A more informal connections is that the principal researchers in these areas often have an intense interest in the strong analogies between their work and that in areas not directly related. We will describe the two areas separately below, but in the second part (zeta functions in geometric analysis) we will try to indicate some of the overlap between number-theoretic and geometric-analytic zeta functions. This project proposes a conference on zeta functions in number theory and geometric analysis, with emphasis on the following subjects: (i) zeta functions of prehomogeneous vector spaces and Igusa zeta functions; (ii) the zeta functions which arise in the spectral theory of the Laplacian. The proposed conference is planned so as to take advantage of the concentration of experts in these areas present at Johns Hopkins in connection with the concentration year held by the Japan-U.S. Mathematical Institute.
Zeta functions play a well-recognized role in many areas of mathematics. In 1992-93, the Japan-US Mathematical Institute at Johns Hopkins University is hosting a special year on zeta functions in number theory and in geometric analysis. This award is for a conference to be held March 29- April 3,1993, to bring together researchers in these subjects. Visitors to Hopkins during Spring 1993 in areas related to number theoretic zeta functions include A. Gyoja, T. Kimura, D. Meuser, F. Sato, and T. Yano. Visitors in areas related to the geometric analysis aspects include T. Adachi, A. Katsuda, Y. Petridis, and T. Sunada. One connection between these two areas is the study of zeta functions associated to quotients of symmetric spaces, e.g. in the spectral theory of automorphic forms. Another is the study of the fine structure of the zeroes of various L-functions, which resembles that of the eigen-values of various Laplacians. A more informal connections is that the principal researchers in these areas often have an intense interest in the strong analogies between their work and that in areas not directly related. We will describe the two areas separately below, but in the second part (zeta functions in geometric analysis) we will try to indicate some of the overlap between number-theoretic and geometric-analytic zeta functions. This project proposes a conference on zeta functions in number theory and geometric analysis, with emphasis on the following subjects: (i) zeta functions of prehomogeneous vector spaces and Igusa zeta functions; (ii) the zeta functions which arise in the spectral theory of the Laplacian. The proposed conference is planned so as to take advantage of the concentration of experts in these areas present at Johns Hopkins in connection with the concentration year held by the Japan-U.S. Mathematical Institute.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steve Zelditch其他文献
Interface asymptotics of partial Bergman kernels on $S^1$-symmetric Kaehler manifolds
$S^1$-对称 Kaehler 流形上部分 Bergman 核的界面渐近
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Steve Zelditch;Peng Zhou - 通讯作者:
Peng Zhou
Interface asymptotics of Wigner—Weyl distributions for the Harmonic Oscillator
- DOI:
10.1007/s11854-022-0209-4 - 发表时间:
2022-07-11 - 期刊:
- 影响因子:0.900
- 作者:
Boris Hanin;Steve Zelditch - 通讯作者:
Steve Zelditch
Spacing Between Phase Shifts in a Simple¶Scattering Problem
- DOI:
10.1007/s002200050663 - 发表时间:
1999-08-01 - 期刊:
- 影响因子:2.600
- 作者:
Steve Zelditch;Maciej Zworski - 通讯作者:
Maciej Zworski
Scaling of Harmonic Oscillator Eigenfunctions and Their Nodal Sets Around the Caustic
- DOI:
10.1007/s00220-016-2807-4 - 发表时间:
2016-12-01 - 期刊:
- 影响因子:2.600
- 作者:
Boris Hanin;Steve Zelditch;Peng Zhou - 通讯作者:
Peng Zhou
Random polynomials with prescribed Newton polytope, I
具有指定牛顿多面体的随机多项式,I
- DOI:
- 发表时间:
2002 - 期刊:
- 影响因子:0
- 作者:
B. Shiffman;Steve Zelditch - 通讯作者:
Steve Zelditch
Steve Zelditch的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Steve Zelditch', 18)}}的其他基金
Program on Large-N Limit Problems in Kähler Geometry
凯勒几何中大 N 极限问题的程序
- 批准号:
1541126 - 财政年份:2015
- 资助金额:
$ 0.8万 - 项目类别:
Standard Grant
Global harmonic analysis and quantum dynamics
全局调和分析和量子动力学
- 批准号:
1206527 - 财政年份:2012
- 资助金额:
$ 0.8万 - 项目类别:
Continuing Grant
Global Harmonic Analysis and Asymptotic Geometry
全局调和分析和渐近几何
- 批准号:
1058342 - 财政年份:2010
- 资助金额:
$ 0.8万 - 项目类别:
Continuing Grant
Workshops for Probabilistic Methods in Mathematical Physics
数学物理概率方法研讨会
- 批准号:
0855508 - 财政年份:2009
- 资助金额:
$ 0.8万 - 项目类别:
Standard Grant
Global Harmonic Analysis and Asymptotic Geometry
全局调和分析和渐近几何
- 批准号:
0904252 - 财政年份:2009
- 资助金额:
$ 0.8万 - 项目类别:
Continuing Grant
Workshops for Probabilistic Methods in Mathematical Physics
数学物理概率方法研讨会
- 批准号:
0757940 - 财政年份:2008
- 资助金额:
$ 0.8万 - 项目类别:
Standard Grant
Global harmonic analysis and asymptotic geometry
全局调和分析和渐近几何
- 批准号:
0603850 - 财政年份:2006
- 资助金额:
$ 0.8万 - 项目类别:
Standard Grant
Conference on Asymptotic and Effective Results in Complex Geometry
复杂几何渐近有效结果会议
- 批准号:
0326849 - 财政年份:2004
- 资助金额:
$ 0.8万 - 项目类别:
Standard Grant
Asymptotic Geometry of Eigenfunctions and Polynomials
本征函数和多项式的渐近几何
- 批准号:
0302518 - 财政年份:2003
- 资助金额:
$ 0.8万 - 项目类别:
Standard Grant
相似国自然基金
Handbook of the Mathematics of the Arts and Sciences的中文翻译
- 批准号:12226504
- 批准年份:2022
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
SCIENCE CHINA: Earth Sciences
- 批准号:41224003
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21224005
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Information Sciences
- 批准号:61224002
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51224001
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21024806
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
- 批准号:81024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
- 批准号:41024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
Collaborative Research: Conference: Mathematical Sciences Institutes Diversity Initiative
合作研究:会议:数学科学研究所多样性倡议
- 批准号:
2317573 - 财政年份:2024
- 资助金额:
$ 0.8万 - 项目类别:
Continuing Grant
Collaborative Research: Conference: Mathematical Sciences Institutes Diversity Initiative
合作研究:会议:数学科学研究所多样性倡议
- 批准号:
2317570 - 财政年份:2024
- 资助金额:
$ 0.8万 - 项目类别:
Continuing Grant
Collaborative Research: Conference: Mathematical Sciences Institutes Diversity Initiative
合作研究:会议:数学科学研究所多样性倡议
- 批准号:
2317572 - 财政年份:2024
- 资助金额:
$ 0.8万 - 项目类别:
Continuing Grant
Collaborative Research: Conference: Mathematical Sciences Institutes Diversity Initiative
合作研究:会议:数学科学研究所多样性倡议
- 批准号:
2317569 - 财政年份:2024
- 资助金额:
$ 0.8万 - 项目类别:
Continuing Grant
Collaborative Research: Conference: Mathematical Sciences Institutes Diversity Initiative
合作研究:会议:数学科学研究所多样性倡议
- 批准号:
2317571 - 财政年份:2024
- 资助金额:
$ 0.8万 - 项目类别:
Standard Grant
Richmond Area Mathematical Sciences Conference at Virginia Commonwealth University
弗吉尼亚联邦大学里士满地区数学科学会议
- 批准号:
2000033 - 财政年份:2019
- 资助金额:
$ 0.8万 - 项目类别:
Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences - Applications of Polynomial Systems - June 4-8, 2018
NSF/CBMS 数学科学区域会议 - 多项式系统的应用 - 2018 年 6 月 4-8 日
- 批准号:
1741730 - 财政年份:2018
- 资助金额:
$ 0.8万 - 项目类别:
Standard Grant
Conference on Equity for Discipline-Based Education Researchers in the Mathematical and Physical Sciences
数理科学学科教育研究人员公平会议
- 批准号:
1845540 - 财政年份:2018
- 资助金额:
$ 0.8万 - 项目类别:
Standard Grant
Conference in Harmonic Analysis at the International Centre for Mathematical Sciences (ICMS)
国际数学科学中心 (ICMS) 调和分析会议
- 批准号:
1700938 - 财政年份:2017
- 资助金额:
$ 0.8万 - 项目类别:
Standard Grant
Enhancing the Mathematical Sciences Component of the 2017 SACNAS National Conference
加强 2017 年 SACNAS 全国会议的数学科学部分
- 批准号:
1743331 - 财政年份:2017
- 资助金额:
$ 0.8万 - 项目类别:
Standard Grant