Mathematical Sciences: Cohomology of G/P and Representation Theory of G, for Real Reductive Lie Groups and Generalizations
数学科学:G/P 的上同调和 G 的表示论,用于实数还原李群和推广
基本信息
- 批准号:9302702
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1993
- 资助国家:美国
- 起止时间:1993-06-15 至 1996-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Casian will study the problem of computing the cohomology of the flag variety for real reductive Lie groups, the cup product and Weyl group action, using the representation theory of the group. He will investigate the problem of determining which Schubert cells contribute to the non torsion part in homology. He will also investigate similar problems in the Kac-Moody setting. The theory of Lie groups, named in honor of the Norwegian mathematician Sophus Lie, has been one of the major themes in twentieth century mathematics. As the mathematical vehicle for exploiting the symmetries inherent in a system, the representation theory of Lie groups has had a profound impact upon mathematics itself, particularly in analysis and number theory, and upon theoretical physics, especially quantum mechanics and elementary particle physics.
Casian将利用群的表示理论研究实约化李群的FLAG簇的上同调、杯积和Weyl群作用的计算问题。他将研究确定哪些舒伯特细胞对同调中的非扭转部分有贡献的问题。他还将在Kac-Moody的背景下调查类似的问题。李群理论是以挪威数学家索菲斯·李的名字命名的,一直是20世纪数学的主要主题之一。作为利用系统固有对称性的数学工具,李群的表示理论对数学本身,特别是在分析和数论方面,以及对理论物理,特别是量子力学和基本粒子物理,都产生了深远的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Luis Casian其他文献
Luis Casian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Luis Casian', 18)}}的其他基金
Toda lattices and Toric varieties for real semisimple Lie algebras
实半单李代数的 Toda 格子和 Toric 簇
- 批准号:
0071523 - 财政年份:2000
- 资助金额:
-- - 项目类别:
Continuing grant
Mathematical Sciences: Geometry and Representations of Lie Groups and Algebras
数学科学:李群和代数的几何和表示
- 批准号:
9002133 - 财政年份:1990
- 资助金额:
-- - 项目类别:
Standard Grant
相似国自然基金
Handbook of the Mathematics of the Arts and Sciences的中文翻译
- 批准号:12226504
- 批准年份:2022
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
SCIENCE CHINA: Earth Sciences
- 批准号:41224003
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21224005
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Information Sciences
- 批准号:61224002
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51224001
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
- 批准号:81024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21024806
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
- 批准号:41024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
Mathematical Sciences: Arithmetic Models for Shimura Varieties, L-Functions and Cohomology Groups as Integral Representations
数学科学:Shimura 簇、L 函数和上同调群的算术模型作为积分表示
- 批准号:
9996393 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: Boundaries of K-Types and Restriction of Cohomology
数学科学:K 型的边界和上同调的限制
- 批准号:
9796228 - 财政年份:1997
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Motivic Cohomology with Finite Coefficients
数学科学:有限系数的动机上同调
- 批准号:
9796325 - 财政年份:1997
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: Algebraic Cycles, Group Schemes, K-Theory and Connections between Stable Homotopy and Group Cohomology
数学科学:代数环、群方案、K 理论以及稳定同伦与群上同调之间的联系
- 批准号:
9704794 - 财政年份:1997
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: Representations and Cohomology of Groups
数学科学:群的表示和上同调
- 批准号:
9700416 - 财政年份:1997
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: Leibniz Cohomology, Differential Geometry and Foliations
数学科学:莱布尼茨上同调、微分几何和叶理
- 批准号:
9704891 - 财政年份:1997
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: Weights of Semisimple Lie Algebras Arising from the Cohomology of Algebraic Varieties
数学科学:由代数簇的上同调产生的半单李代数的权重
- 批准号:
9623027 - 财政年份:1996
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Boundaries of K-Types and Restriction of Cohomology
数学科学:K 型的边界和上同调的限制
- 批准号:
9623280 - 财政年份:1996
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: 1996 Summer Research Institute - Cohomology, Representations and Actions of Finite Groups
数学科学:1996年暑期研究所 - 有限群的上同调、表示和作用
- 批准号:
9526513 - 财政年份:1996
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Motives and Motivic Cohomology
数学科学:动机和动机上同调
- 批准号:
9622995 - 财政年份:1996
- 资助金额:
-- - 项目类别:
Continuing Grant