Mathematical Sciences: Weighted Norm Inequalities and Differential Equations
数学科学:加权范数不等式和微分方程
基本信息
- 批准号:9302991
- 负责人:
- 金额:$ 5.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1993
- 资助国家:美国
- 起止时间:1993-07-15 至 1995-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Wheeden 9302991 This award continues support for mathematical research into problems arising in the modern theory of partial differential equations and singular integral operators. The form of the analysis which takes place involves critical inequalities measuring the power norms of functions with that of their gradients, especially when the measures are weighted by different functions. Such comparisons fall under the heading of Sobolev- Poincare inequalities. From such results one obtains upper and lower bounds for fundamental solutions of divergence form degenerate parabolic equations in case the degeneracy is time- dependent and measured in terms of the two weight functions. Work will be done establishing similar inequalities when the gradient is replaced by vector fields other than the gradient. A second line of investigation concerns Carleson-type estimates for measuring functions (weighted) in a half-space with their boundary value norms taken against different weights. Good, but incomplete, results have been obtained for harmonic functions. Efforts will be made to determine the extent that integral transforms generated by other than the Poisson kernel produce the same type of inequalities - especially in cases of non- convolution kernels. Finally, work is to be done on characterizing weights which give good bounds on weighted fractional integrals when compared with the original function norms. The measurement of integrals plays a central role in determining both existence and bounds on solutions of differential equations. Many of these results involve parameter bounds which are dependent only on the underlying dimension. Through careful analysis of the integrals and norms of the corresponding derivatives one obtains significant information about the existence and regularity of solutions. ***
Wheeden 9302991这一奖项继续支持对现代偏微分方程和奇异积分算子理论中出现的问题进行数学研究。分析的形式涉及到衡量函数的幂范数与其梯度的幂范数的临界不等式,特别是当这些度量由不同的函数加权时。这样的比较属于索博列夫-庞加莱不平等的范畴。根据这些结果,我们得到了退化抛物型方程散度形式的基本解的上下界,在退化程度是时间相关的情况下,用两个权函数来衡量。当梯度被不同于梯度的矢量场取代时,将完成建立类似的不平等的工作。第二个研究方向是半空间中度量函数(加权)的Carleson型估计,其边值范数相对于不同的权重。对于调和函数,已经得到了很好的,但不完全的结果。将努力确定由非泊松核产生的积分变换在多大程度上产生相同类型的不平等--特别是在非卷积核的情况下。最后,在刻画加权分数次积分与原函数范数相比具有良好界的权重方面还需要做的工作。积分的测量在确定微分方程解的存在性和界方面起着核心作用。这些结果中的许多都涉及仅依赖于基本维度的参数界限。通过对相应导数的积分和范数的仔细分析,可以得到关于解的存在性和正则性的重要信息。***
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Richard Wheeden其他文献
Richard Wheeden的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Richard Wheeden', 18)}}的其他基金
Mathematical Sciences: Weighted Norm Inequalities and Applications
数学科学:加权范数不等式及其应用
- 批准号:
9500799 - 财政年份:1995
- 资助金额:
$ 5.5万 - 项目类别:
Continuing Grant
Mathematical Sciences: Weighted Norm Inequalities and Differential Equations
数学科学:加权范数不等式和微分方程
- 批准号:
9104195 - 财政年份:1991
- 资助金额:
$ 5.5万 - 项目类别:
Continuing Grant
Mathematical Sciences: Weighted Norm Inequalities and Differential Equations
数学科学:加权范数不等式和微分方程
- 批准号:
8902952 - 财政年份:1989
- 资助金额:
$ 5.5万 - 项目类别:
Continuing Grant
Mathematical Sciences: Weighted norm inequalities and applications
数学科学:加权范数不等式及其应用
- 批准号:
8703546 - 财政年份:1987
- 资助金额:
$ 5.5万 - 项目类别:
Continuing Grant
相似国自然基金
Handbook of the Mathematics of the Arts and Sciences的中文翻译
- 批准号:12226504
- 批准年份:2022
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
SCIENCE CHINA: Earth Sciences
- 批准号:41224003
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21224005
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Information Sciences
- 批准号:61224002
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51224001
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21024806
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
- 批准号:81024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
- 批准号:41024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
Mathematical Sciences: Exponential Polynomials, Lacunary Series; Weighted Norm Inequalities
数学科学:指数多项式、空位级数;
- 批准号:
9706775 - 财政年份:1997
- 资助金额:
$ 5.5万 - 项目类别:
Standard Grant
Mathematical Sciences: Weighted Empiricals in Regression with Survival Data
数学科学:生存数据回归中的加权经验
- 批准号:
9504918 - 财政年份:1995
- 资助金额:
$ 5.5万 - 项目类别:
Standard Grant
Mathematical Sciences: Weighted Norm Inequalities and Applications
数学科学:加权范数不等式及其应用
- 批准号:
9500799 - 财政年份:1995
- 资助金额:
$ 5.5万 - 项目类别:
Continuing Grant
Mathematical Sciences: Problems in Almost Everywhere Convergence of Weighted Averages and in Spherical Type of Rank One Transformations
数学科学:加权平均几乎处处收敛的问题和一阶变换的球型问题
- 批准号:
9307945 - 财政年份:1993
- 资助金额:
$ 5.5万 - 项目类别:
Standard Grant
Mathematical Sciences: Weighted Norm Inequalities and Differential Equations
数学科学:加权范数不等式和微分方程
- 批准号:
9104195 - 财政年份:1991
- 资助金额:
$ 5.5万 - 项目类别:
Continuing Grant
Mathematical Sciences: Weighted Norm Inequalities and Partial Differential Equations
数学科学:加权范数不等式和偏微分方程
- 批准号:
9003095 - 财政年份:1990
- 资助金额:
$ 5.5万 - 项目类别:
Standard Grant
Mathematical Sciences: Weighted Norm Inequalities and Differential Equations
数学科学:加权范数不等式和微分方程
- 批准号:
8902952 - 财政年份:1989
- 资助金额:
$ 5.5万 - 项目类别:
Continuing Grant
Mathematical Sciences: Weighted norm inequalities and applications
数学科学:加权范数不等式及其应用
- 批准号:
8703546 - 财政年份:1987
- 资助金额:
$ 5.5万 - 项目类别:
Continuing Grant
Mathematical Sciences: Sobolev Estimates for Weighted OrliczSpaces and their Applications to Linear and Nonlinear Boundary Value Problems
数学科学:加权 OrliczSpaces 的 Sobolev 估计及其在线性和非线性边值问题中的应用
- 批准号:
8701321 - 财政年份:1987
- 资助金额:
$ 5.5万 - 项目类别:
Standard Grant
Mathematical Sciences: Orthogonal Polynomials, Weighted Approximation, and Zero Distributions
数学科学:正交多项式、加权近似和零分布
- 批准号:
8620098 - 财政年份:1987
- 资助金额:
$ 5.5万 - 项目类别:
Continuing Grant