Mathematical Sciences: Harmonic Analysis and Self-Similarity
数学科学:调和分析和自相似性
基本信息
- 批准号:9303718
- 负责人:
- 金额:$ 13.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing grant
- 财政年份:1993
- 资助国家:美国
- 起止时间:1993-04-01 至 1996-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project seeks to exploit some of the developing ideas in harmonic analysis which relate to important ideas in self-similarity. Self-similarity is a subject of intense interest today because of its relationship with fractal geometry and wavelet analysis. However, these relationships can be traced to work in the early 30's by Wiener and Wintner on Fourier transforms of Cantor measures. Work to be done includes the computation of dimensions of classes of self-similar measures. There are two directions in which the concept will be expanded. The first involves replacing strictly contractive transformations in their definition and replacing this with average contractivity. One can no longer guarantee compact support in this case. The growth rate of such measures and the smoothness of their Fourier transform are subjects for investigation. The second direction replaces the convex combinations with variable weights. Here one is interested in existence and uniqueness of the measures as well as their Lp and pointwise dimensions. Work will also be done in analyzing the Radon transform of self-similar measures. The two natural questions to be considered are whether or not the Radon transform is invertible and whether one can characterize the range of the transform. The transform is known to preserve the class of distributions if and only if the transform of the measure is not slowly decreasing. For self-similar measures this is not the case, leaving open the question of what the proper spaces ought to be. Harmonic analysis combines those elements of mathematics best exemplifying the ideas of synthesis. One seeks to decompose complex problems into fundamental components. These components are then analyzed for their basic characteristics. Finally, the solution is reconstructed through a recombination of the components. The Fourier series and Fourier transform are examples of tools used in this context; one discrete , the other representing a continuous decomposition. More recently the wavelet theory added new dimensions to some of the more classical approaches to harmonic analysis.
本项目旨在探索谐波分析中一些发展中的思想,这些思想与自相似性中的重要思想有关。由于自相似性与分形几何和小波分析的关系,它是当今人们非常感兴趣的一个主题。然而,这些关系可以追溯到30年代早期Wiener和Wintner对康托测度的傅里叶变换的研究。要做的工作包括计算自相似测度类的维数。这一概念将向两个方向扩展。第一种方法是用平均收缩性取代严格收缩变换的定义。在这种情况下,不能再保证紧凑的支持。这些度量的增长率和它们的傅立叶变换的平滑性是研究的主题。第二个方向用可变权值替换凸组合。在这里,我们感兴趣的是度量的存在性和唯一性,以及它们的Lp和点维。对自相似测度的Radon变换进行了分析。要考虑的两个自然问题是Radon变换是否可逆以及是否可以表征变换的范围。当且仅当测度的变换不缓慢减小时,已知变换能保持这类分布。对于自相似度量,情况并非如此,留下了适当空间应该是什么的问题。谐波分析结合了最能体现综合思想的数学元素。人们试图把复杂的问题分解成基本的组成部分。然后分析这些组件的基本特性。最后,通过组件的重组重构解。傅里叶级数和傅里叶变换是在这种情况下使用的工具的例子;一个是离散的,另一个是连续的。最近,小波理论为一些更经典的谐波分析方法增加了新的维度。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert Strichartz其他文献
Robert Strichartz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert Strichartz', 18)}}的其他基金
Sixth Cornell Conference on Analysis, Probability, and Mathematical Physics on Fractals
第六届康奈尔分形分析、概率和数学物理会议
- 批准号:
1700187 - 财政年份:2017
- 资助金额:
$ 13.56万 - 项目类别:
Standard Grant
Cornell's Fifth Conference on Analysis, Probability and Mathematical Physics on Fractals
康奈尔大学第五届分形分析、概率和数学物理会议
- 批准号:
1361934 - 财政年份:2014
- 资助金额:
$ 13.56万 - 项目类别:
Standard Grant
REU Site: Cornell's Summer REU Program in Mathematics
REU 网站:康奈尔大学夏季 REU 数学课程
- 批准号:
1156350 - 财政年份:2012
- 资助金额:
$ 13.56万 - 项目类别:
Continuing Grant
REU Sites: Cornell's Summer REU Program in Mathematics
REU 站点:康奈尔大学夏季数学 REU 项目
- 批准号:
0648208 - 财政年份:2007
- 资助金额:
$ 13.56万 - 项目类别:
Continuing Grant
Non-linear Analysis in Riemannian Geometry
黎曼几何中的非线性分析
- 批准号:
0306495 - 财政年份:2003
- 资助金额:
$ 13.56万 - 项目类别:
Standard Grant
REU Site: Cornell's Summer REU Program in Mathematics
REU 网站:康奈尔大学夏季 REU 数学课程
- 批准号:
0139229 - 财政年份:2002
- 资助金额:
$ 13.56万 - 项目类别:
Continuing grant
Linear and Non-Linear Eigenvalues in Geometry
几何中的线性和非线性特征值
- 批准号:
0072164 - 财政年份:2000
- 资助金额:
$ 13.56万 - 项目类别:
Continuing Grant
相似国自然基金
Handbook of the Mathematics of the Arts and Sciences的中文翻译
- 批准号:12226504
- 批准年份:2022
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
SCIENCE CHINA: Earth Sciences
- 批准号:41224003
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21224005
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Information Sciences
- 批准号:61224002
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51224001
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21024806
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
- 批准号:81024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
- 批准号:41024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
Conference in Harmonic Analysis at the International Centre for Mathematical Sciences (ICMS)
国际数学科学中心 (ICMS) 调和分析会议
- 批准号:
1700938 - 财政年份:2017
- 资助金额:
$ 13.56万 - 项目类别:
Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences: Uncertainty Principles in Harmonic Analysis: Gap and Type Problems
NSF/CBMS 数学科学区域会议:调和分析中的不确定性原理:间隙和类型问题
- 批准号:
1241272 - 财政年份:2012
- 资助金额:
$ 13.56万 - 项目类别:
Standard Grant
CBMS Regional Conference in the Mathematical Sciences - Global Harmonic Analysis - June 2011
CBMS 数学科学区域会议 - 全球调和分析 - 2011 年 6 月
- 批准号:
1040927 - 财政年份:2011
- 资助金额:
$ 13.56万 - 项目类别:
Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences: The Interplay Between Convex Geometry and Harmonic Analysis, July 29 - August 2, 2006
NSF/CBMS 数学科学区域会议:凸几何与调和分析之间的相互作用,2006 年 7 月 29 日至 8 月 2 日
- 批准号:
0532656 - 财政年份:2006
- 资助金额:
$ 13.56万 - 项目类别:
Standard Grant
NSF/CBMS Regional Conference in the Mathematical Sciences-"Nonhomogeneous Harmonic Analysis, Weights, and Applications to Problems in Complex Analysis and Operator Theory"
NSF/CBMS 数学科学区域会议 - “非齐次调和分析、权重以及在复分析和算子理论中问题的应用”
- 批准号:
0121284 - 财政年份:2002
- 资助金额:
$ 13.56万 - 项目类别:
Standard Grant
Mathematical Sciences: Harmonic Analysis and Differential Equations
数学科学:调和分析和微分方程
- 批准号:
9706889 - 财政年份:1997
- 资助金额:
$ 13.56万 - 项目类别:
Continuing Grant
Mathematical Sciences: Harmonic Measure, Conformal Mappings, and Geometric Measure Theory
数学科学:调和测度、共形映射和几何测度理论
- 批准号:
9706875 - 财政年份:1997
- 资助金额:
$ 13.56万 - 项目类别:
Standard Grant
Mathematical Sciences: Harmonic Analysis and Partial Differential Equations
数学科学:调和分析和偏微分方程
- 批准号:
9623079 - 财政年份:1996
- 资助金额:
$ 13.56万 - 项目类别:
Standard Grant
Mathematical Sciences: Conference on Harmonic Analysis to Honor Donald J. Newman; March 11-14, 1996; Philadelphia, PA.
数学科学:调和分析会议以纪念唐纳德·J·纽曼;
- 批准号:
9530310 - 财政年份:1996
- 资助金额:
$ 13.56万 - 项目类别:
Standard Grant
Mathematical Sciences: Harmonic Maps and Harmonic Functions
数学科学:调和图和调和函数
- 批准号:
9626310 - 财政年份:1996
- 资助金额:
$ 13.56万 - 项目类别:
Standard Grant