Mathematical Sciences: The Arithmetic of Shimura Varieties
数学科学:志村簇的算术
基本信息
- 批准号:9303812
- 负责人:
- 金额:$ 8.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1993
- 资助国家:美国
- 起止时间:1993-06-01 至 1997-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award supports the research of Professor James Milne to work in algebraic geometry. It has been known for several decades that there is a close and fruitful relation between the arithmetic of abelian varieties and their degenerations, on the one hand, and the arithmetic of Siegel modular varieties and their compactifications on the other hand. Recently, Professor Milne has found a similar relation between abelian motives and Shimura varieties of abelian type. It is proposed to study the degeneration of abelian type. It is proposed to study the degeneration of abelian motives and exploit the relation in order to obtain information about the compactifications of Shimura varieties over number fields This research uses the techniques of algebraic geometry, one of the oldest parts of modern mathematics, but one which has had a revolutionary flowering in the past quarter-century. In its origin, it treated figures that could be defined in the plane by the simplest equations, namely polynomials. Nowadays the field makes use of methods not only from algebra, but from analysis and topology, and conversely is finding application in those fields as well as in physics, theoretical computer science, and robotics.
该奖项支持詹姆斯·米尔恩教授致力于代数几何的研究。几十年来,阿贝尔变种及其退化算法与Siegel模变元算法及其紧致化之间有着密切而卓有成效的联系。最近,米尔恩教授发现了阿贝尔动机和阿贝尔类型的下村品种之间的类似关系。建议对阿贝尔型的简并进行研究。有人建议研究阿贝尔动机的退化并利用这种关系来获得关于数域上下村簇紧化的信息。这项研究使用了代数几何的技术,代数几何是现代数学中最古老的部分之一,但在过去的25年里取得了革命性的成就。在它的起源中,它处理的是可以在平面上用最简单的方程定义的图形,即多项式。如今,该领域不仅使用代数的方法,而且使用分析和拓扑学的方法,反过来,在这些领域以及物理、理论计算机科学和机器人中也找到了应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James Milne其他文献
James Milne的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('James Milne', 18)}}的其他基金
Abelian Motives and Shimura Varieties
阿贝尔动机和志村品种
- 批准号:
9622770 - 财政年份:1996
- 资助金额:
$ 8.52万 - 项目类别:
Standard Grant
Mathematical Sciences: Rational Points on Algebraic Varieties
数学科学:代数簇上的有理点
- 批准号:
9501057 - 财政年份:1995
- 资助金额:
$ 8.52万 - 项目类别:
Standard Grant
Mathematical Sciences: Arithmetic Geometry
数学科学:算术几何
- 批准号:
9103018 - 财政年份:1991
- 资助金额:
$ 8.52万 - 项目类别:
Continuing Grant
Mathematical Sciences: Research Conference on Automorphic Forms, Shimura Varieties, and L-Functions
数学科学:自守形式、Shimura 簇和 L 函数研究会议
- 批准号:
8803088 - 财政年份:1988
- 资助金额:
$ 8.52万 - 项目类别:
Standard Grant
相似国自然基金
Handbook of the Mathematics of the Arts and Sciences的中文翻译
- 批准号:12226504
- 批准年份:2022
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
SCIENCE CHINA: Earth Sciences
- 批准号:41224003
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21224005
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Information Sciences
- 批准号:61224002
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51224001
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21024806
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
- 批准号:81024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
- 批准号:41024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
Mathematical Sciences: Arithmetic Models for Shimura Varieties, L-Functions and Cohomology Groups as Integral Representations
数学科学:Shimura 簇、L 函数和上同调群的算术模型作为积分表示
- 批准号:
9996393 - 财政年份:1999
- 资助金额:
$ 8.52万 - 项目类别:
Continuing Grant
Mathematical Sciences: Geometry and Arithmetic of Riemann's Moduli Space
数学科学:黎曼模空间的几何与算术
- 批准号:
9610041 - 财政年份:1997
- 资助金额:
$ 8.52万 - 项目类别:
Standard Grant
Mathematical Sciences: L-Independence in Arithmetic Algebraic Geometry
数学科学:算术代数几何中的 L 独立性
- 批准号:
9796240 - 财政年份:1997
- 资助金额:
$ 8.52万 - 项目类别:
Continuing Grant
Mathematical Sciences: Arithmetic of L-Values and Iwasawa Theory
数学科学:L 值算术和岩泽理论
- 批准号:
9796122 - 财政年份:1997
- 资助金额:
$ 8.52万 - 项目类别:
Standard Grant
Mathematical Sciences: Topology, Arithmetic Groups and Toric Varieties
数学科学:拓扑、算术群和环面簇
- 批准号:
9704535 - 财政年份:1997
- 资助金额:
$ 8.52万 - 项目类别:
Standard Grant
Mathematical Sciences: NSF/CBMS Regional Conference in the Mathematical Sciences--Spectral Problems in Geometry and Arithmetic--August18-22, 1997
数学科学:NSF/CBMS 数学科学区域会议——几何和算术中的谱问题——1997 年 8 月 18 日至 22 日
- 批准号:
9612075 - 财政年份:1996
- 资助金额:
$ 8.52万 - 项目类别:
Standard Grant
Mathematical Sciences: Geometry, Topology and Arithmetic of Hyperbolic 3-Manifolds
数学科学:双曲3流形的几何、拓扑和算术
- 批准号:
9625958 - 财政年份:1996
- 资助金额:
$ 8.52万 - 项目类别:
Standard Grant
Mathematical Sciences: Arithmetic Models for Shimura Varieties, L-Functions and Cohomology Groups as Integral Representations
数学科学:Shimura 簇、L 函数和上同调群的算术模型作为积分表示
- 批准号:
9623269 - 财政年份:1996
- 资助金额:
$ 8.52万 - 项目类别:
Continuing Grant
Mathematical Sciences: L-Independence in Arithmetic Algebraic Geometry
数学科学:算术代数几何中的 L 独立性
- 批准号:
9625417 - 财政年份:1996
- 资助金额:
$ 8.52万 - 项目类别:
Continuing Grant
Mathematical Sciences: Cohomology of Arithmetic Groups
数学科学:算术群的上同调
- 批准号:
9531675 - 财政年份:1996
- 资助金额:
$ 8.52万 - 项目类别:
Continuing grant