Mathematical Sciences: Analytical Gauge Theory; January 5-9, 1994; Las Cruces, New Mexico
数学科学:解析规范理论;
基本信息
- 批准号:9314382
- 负责人:
- 金额:$ 1.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1994
- 资助国家:美国
- 起止时间:1994-01-01 至 1994-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9314382 Staffeldt The story can be traced back to the fundamental work of Riemann, Klein, and Betti at the turn of this century, on the classification of surfaces and their higher dimensional analogues, called manifolds. Loosely peaking, they showed that for each surface there is a geometrically defined natural number called its genus, that characterizes the surface up to certain transformations, i.e. two surfaces with the same genus are indistinguishable. Moreover, given any natural number there is a model surface with that genus (to visualize a surface of genus g, imagine the surface of a coffee cup with g- 1 extra handles). A manifold of dimension n is a geometric object that looks locally like n dimensional space, in the same way that a surface looks in a small enough region, like a plane. Albert Einstein's relativity theory, with its emphasis on the four dimensional manifold of space-time, convinced the scientific world of the necessity to come to terms with manifolds of dimension greater than two. Mathematicians in the fields of algebraic and differential topology, differential geometry, among others, and physicists have devoted considerable effort in this century to developing classification schemes for manifolds of dimension three and higher. Although a great deal is known, no such schemes have been established that successfully classify manifolds of dimension three. Amazingly, in the 1960s a multistage classification scheme was developed for manifolds of dimension five and greater. The methods used to establish that scheme simply don't apply in the lower dimensions. In the early 1980s Michael Freedman proved results that led to the classification of a large natural family of four dimensional manifolds, the simply-connected ones, up to topological type, the coarsest classification that had been sought. Part of his work was devoted to constructing many manifolds not previously know to exist. Soon after Freedman produced his top ological classification theorem, Simon Donaldson used techniques of gauge theory, the subject of the conference, to shed light on a finer classification of four dimensional manifolds: the classification up to smooth equivalence, or up to diffeomorphism. Donaldson's main idea is to study the finer structure on simply connected smooth four manifolds by analyzing the geometry of spaces of auxiliary structures that can be associated with simply connected smooth manifolds. His first result was that hardly any of Freedman's new manifolds could be smooth, the main reason why it was so hard to find them. Later work has produced a host of new variants for distinguishing smooth manifolds within a given coarse, topological, Freedman type. The conference will review the properties of gauge theory which are crucial for understanding the geometry of the spaces of auxiliary structure and will clarify the connections. Then the speaker will turn to a situation which has the same formal properties of gauge theory a la Donaldson, but whose analysis is incomplete and for which several avenues for further research seem to be open.
9314382斯塔菲尔特这个故事可以追溯到本世纪初黎曼、克莱因和贝蒂关于曲面及其高维类似物(称为流形)的分类的基本工作。松散地达到顶峰,他们表明,对于每个曲面,都有一个几何定义的自然数,称为其亏格,它表征该曲面直到某些变换,即具有相同亏格的两个曲面是不可区分的。此外,给定任何自然数,都有一个具有该亏格的模型曲面(为了形象地描述亏格g的曲面,可以想象有g-1个额外把手的咖啡杯的曲面)。N维流形是局部看起来像n维空间的几何对象,就像曲面在足够小的区域中看起来像平面一样。阿尔伯特·爱因斯坦的相对论强调时空的四维流形,使科学界相信有必要与维度大于2的流形达成协议。在本世纪,代数和微分拓扑学、微分几何等领域的数学家和物理学家已经付出了相当大的努力来开发三维和更高维流形的分类方案。虽然已知很多,但还没有建立这样的方案来成功地对三维流形进行分类。令人惊讶的是,在20世纪60年代,一种针对五维及以上流形的多级分类方案被开发出来。用于建立该方案的方法根本不适用于较低的维度。20世纪80年代初,迈克尔·弗里德曼证明了一些结果,这些结果导致了一个由四维流形组成的自然大族的分类,即单连通流形,直到拓扑型,这是人们所寻求的最粗略的分类。他的部分工作致力于构建许多以前不知道存在的流形。在弗里德曼提出他的顶级分类定理后不久,西蒙·唐纳森使用规范理论的技术,即会议的主题,阐明了四维流形的一种更精细的分类:直到光滑等价的分类,或者直到微分同胚的分类。Donaldson的主要思想是通过分析可以与单连通光滑流形相联系的辅助结构的空间的几何来研究单连通光滑四流形上的精细结构。他的第一个结果是,弗里德曼的新流形中几乎没有一个是光滑的,这就是为什么很难找到它们的主要原因。后来的工作已经产生了许多新的变体来区分给定的粗糙的、拓扑的、Freedman类型的光滑流形。会议将回顾规范理论的性质,这些性质对于理解辅助结构空间的几何至关重要,并将阐明它们之间的联系。然后,演讲者将转向一种情况,这种情况具有与唐纳森规范理论相同的形式性质,但其分析是不完整的,而且似乎有几个进一步研究的途径是开放的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ross Staffeldt其他文献
Ross Staffeldt的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ross Staffeldt', 18)}}的其他基金
Mathematical Sciences: On the Algebraic K-Theory of Topological Spaces
数学科学:拓扑空间的代数K理论
- 批准号:
8405208 - 财政年份:1984
- 资助金额:
$ 1.63万 - 项目类别:
Standard Grant
On Applications of the Algebraic K-Theory of Topological Spaces
拓扑空间代数K理论的应用
- 批准号:
8002396 - 财政年份:1980
- 资助金额:
$ 1.63万 - 项目类别:
Standard Grant
相似国自然基金
Handbook of the Mathematics of the Arts and Sciences的中文翻译
- 批准号:12226504
- 批准年份:2022
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
SCIENCE CHINA: Earth Sciences
- 批准号:41224003
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21224005
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Information Sciences
- 批准号:61224002
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51224001
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21024806
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
- 批准号:81024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
- 批准号:41024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
REU Site: Analytical and Statistical Methods in the Mathematical Sciences
REU 网站:数学科学中的分析和统计方法
- 批准号:
0243822 - 财政年份:2003
- 资助金额:
$ 1.63万 - 项目类别:
Continuing Grant
Mathematical Sciences: Analytical Problems for Models in Compressible Fluid Mechanics
数学科学:可压缩流体力学模型的分析问题
- 批准号:
9996443 - 财政年份:1999
- 资助金额:
$ 1.63万 - 项目类别:
Standard Grant
Mathematical Sciences: Analytical and Combinatorial Aspects of Subfactors
数学科学:子因子的分析和组合方面
- 批准号:
9531566 - 财政年份:1996
- 资助金额:
$ 1.63万 - 项目类别:
Continuing grant
Mathematical Sciences: Analytical Problems for Models in Compressible Fluid Mechanics
数学科学:可压缩流体力学模型的分析问题
- 批准号:
9623037 - 财政年份:1996
- 资助金额:
$ 1.63万 - 项目类别:
Standard Grant
Mathematical Sciences: Some Analytical Aspects of the Theory of the Integrable Systems
数学科学:可积系统理论的一些分析方面
- 批准号:
9501559 - 财政年份:1995
- 资助金额:
$ 1.63万 - 项目类别:
Standard Grant
Mathematical Sciences: Analytical Approaches to Singular Perturbation Problems of Significance in Applications
数学科学:具有应用意义的奇异摄动问题的分析方法
- 批准号:
9404536 - 财政年份:1994
- 资助金额:
$ 1.63万 - 项目类别:
Continuing Grant
Mathematical Sciences: Study of Strongly Chaotic Thermal Convection in the Earth's Mantle: Analytical, Computational and Visualization Perspectives
数学科学:地幔中的强混沌热对流研究:分析、计算和可视化视角
- 批准号:
9201042 - 财政年份:1993
- 资助金额:
$ 1.63万 - 项目类别:
Standard Grant
Mathematical Sciences: Some Analytical Aspects of the Theory of the Integrable Systems
数学科学:可积系统理论的一些分析方面
- 批准号:
9315964 - 财政年份:1993
- 资助金额:
$ 1.63万 - 项目类别:
Standard Grant
Mathematical Sciences: Analytical Aspects of Multidimensional Inverse Scattering
数学科学:多维逆散射的分析方面
- 批准号:
9496154 - 财政年份:1993
- 资助金额:
$ 1.63万 - 项目类别:
Standard Grant
Mathematical Sciences: Analytical and Combinatorial Aspects of Subfactors
数学科学:子因子的分析和组合方面
- 批准号:
9307234 - 财政年份:1993
- 资助金额:
$ 1.63万 - 项目类别:
Continuing Grant