Lie Groups
李群
基本信息
- 批准号:9321285
- 负责人:
- 金额:$ 7.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1994
- 资助国家:美国
- 起止时间:1994-06-15 至 1998-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9321285 Wolf Wolf will continue his research on Lie groups, harmonic analysis and representation theory, with applications to complex analysis, riemannian geometry, numerical analysis and control theory. He will continue his work on infinite dimensional Lie groups that are direct limits of finite dimensional groups, and will investigate questions in control theory that are essentially questions of representation theory. The theory of Lie groups, named in honor of the Norwegian mathematician Sophus Lie, has been one of the major themes in twentieth century mathematics. As the mathematical vehicle for exploiting the symmetries inherent in a system, the representation theory of Lie groups has had a profound impact upon mathematics itself, particularly in analysis and number theory, and upon theoretical physics, especially quantum mechanics and elementary particle physics. ***
小行星9321285 沃尔夫将继续他的研究李群,调和分析和代表性理论,应用到复杂的分析,黎曼几何,数值分析和控制理论。 他将继续他的工作无限维李群是直接限制有限维群体,并将调查问题的控制理论,基本上是问题的代表性理论。 李群理论是以挪威数学家Sophus Lie的荣誉命名的,是世纪数学的重要课题之一。 李群表示论作为利用系统中固有对称性的数学工具,对数学本身,特别是分析和数论,以及理论物理学,特别是量子力学和基本粒子物理学产生了深远的影响。 ***
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joseph Wolf其他文献
Tibiotalocalcaneal fusion with bulk femoral head allograft in a patient with a rare, trauma induced, rigid, cavovarus foot deformity
- DOI:
10.1016/j.fastrc.2021.100134 - 发表时间:
2022-03-01 - 期刊:
- 影响因子:
- 作者:
Josh Carroll;Joseph Wolf;Lawrence M. Fallat - 通讯作者:
Lawrence M. Fallat
Outcomes and Material Cost Comparison of Transosseous Versus Suture Anchor Fixation of the Achilles Tendon: A Retrospective Study
- DOI:
10.1053/j.jfas.2021.05.012 - 发表时间:
2022-01-01 - 期刊:
- 影响因子:
- 作者:
Joseph Wolf;Lawrence Fallat;Mary Coffey - 通讯作者:
Mary Coffey
Modified rhytidectomy incision for parotidectomy
- DOI:
10.1016/j.otot.2006.08.001 - 发表时间:
2006-09-01 - 期刊:
- 影响因子:
- 作者:
Larry Shemen;Joseph Wolf;James Turner - 通讯作者:
James Turner
Two-Year Outcomes After Total Ankle Replacement With a Novel Fixed-Bearing Implant By a Single Surgeon Non-Inventor
- DOI:
10.1053/j.jfas.2024.01.001 - 发表时间:
2024-05-01 - 期刊:
- 影响因子:
- 作者:
James M. Cottom;Jay S. Badell;Joseph Wolf - 通讯作者:
Joseph Wolf
Joseph Wolf的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joseph Wolf', 18)}}的其他基金
Sixth Workshop on Lie Theory and Geometry
第六届李理论与几何研讨会
- 批准号:
0726385 - 财政年份:2007
- 资助金额:
$ 7.43万 - 项目类别:
Standard Grant
Mathematical Sciences: Advanced Training in Modern Analysis
数学科学:现代分析高级培训
- 批准号:
9500288 - 财政年份:1995
- 资助金额:
$ 7.43万 - 项目类别:
Continuing Grant
GIG: Advanced Training in Modern Analysis
GIG:现代分析高级培训
- 批准号:
9508597 - 财政年份:1995
- 资助金额:
$ 7.43万 - 项目类别:
Continuing Grant
U.S.-Argentina Workshop in Lie Groups and Quantum Groups; Cordoba, Argentina, August, 1995
美国-阿根廷李群和量子群研讨会;
- 批准号:
9503118 - 财政年份:1995
- 资助金额:
$ 7.43万 - 项目类别:
Standard Grant
Mathematical Sciences: Advanced Training in Modern Analysis
数学科学:现代分析高级培训
- 批准号:
9208907 - 财政年份:1992
- 资助金额:
$ 7.43万 - 项目类别:
Continuing Grant
Mathematical Sciences: Lie Groups, Lie Algebras and Their Representations
数学科学:李群、李代数及其表示
- 批准号:
9207093 - 财政年份:1992
- 资助金额:
$ 7.43万 - 项目类别:
Standard Grant
相似海外基金
Conference: I.H.E.S. Workshop: Homogeneous Dynamics and Geometry in Higher-Rank Lie Groups
会议:I.H.E.S.
- 批准号:
2321093 - 财政年份:2023
- 资助金额:
$ 7.43万 - 项目类别:
Standard Grant
Large-N limit of horizontal Brownian motions on Lie groups
李群上水平布朗运动的大 N 极限
- 批准号:
EP/Y001478/1 - 财政年份:2023
- 资助金额:
$ 7.43万 - 项目类别:
Research Grant
[infinite]-Lie Groups and Their [infinite]-Lie Algebras in Real Cohesive Homotopy Type Theory
实内聚同伦型理论中的[无穷]-李群及其[无穷]-李代数
- 批准号:
2888102 - 财政年份:2023
- 资助金额:
$ 7.43万 - 项目类别:
Studentship
Transforming Groups: The Use of Individuation to Aid Collaborative Recall and Lie Detection in Intelligence-gathering Contexts
转变群体:利用个性化来帮助情报收集环境中的协作回忆和测谎
- 批准号:
2754576 - 财政年份:2022
- 资助金额:
$ 7.43万 - 项目类别:
Studentship
Studies on unstable cohomologies of the automorphism groups of free groups and its associated Lie algebras
自由群自同构群的不稳定上同调及其相关李代数的研究
- 批准号:
22K03299 - 财政年份:2022
- 资助金额:
$ 7.43万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The geometry Anosov subgroups in Lie groups
李群中的几何阿诺索夫子群
- 批准号:
RGPIN-2020-05557 - 财政年份:2022
- 资助金额:
$ 7.43万 - 项目类别:
Discovery Grants Program - Individual
Lie groups in Mathematics and Physics
数学和物理中的李群
- 批准号:
574647-2022 - 财政年份:2022
- 资助金额:
$ 7.43万 - 项目类别:
University Undergraduate Student Research Awards
Geometry, Arithmeticity, and Random Walks on Discrete and Dense Subgroups of Lie Groups
李群的离散和稠密子群上的几何、算术和随机游走
- 批准号:
2203867 - 财政年份:2022
- 资助金额:
$ 7.43万 - 项目类别:
Standard Grant
Characterization of Cofree Representations of Connected Semi-simple Lie Groups
连通半单李群 Cofree 表示的表征
- 批准号:
547756-2020 - 财政年份:2022
- 资助金额:
$ 7.43万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral














{{item.name}}会员




