Lie Groups
李群
基本信息
- 批准号:9705709
- 负责人:
- 金额:$ 8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1997
- 资助国家:美国
- 起止时间:1997-07-01 至 2000-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract 9705709 Wolf Prof. Joseph Wolf will continue his research on Lie groups, harmonic analysis and representation, with some applications to complex analysis, Riemannian geometry, numerical analysis and control theory. This includes (1) his work on double fibration transforms and the structure of spaces of maximal compact subvarieties in flag domains, (2) his work on infinite dimensional Lie groups that are direct limits of finite dimensional groups, (3) his study of the Harish-Chandra--Schwartz space of a general semisimple Lie groups, (4) applications of his results with Milicic, Hecht and Schmid on equivalence of various constructions of representations of semisimple Lie groups, and (5) his line of research connecting semisimple representation theory with certain aspects of applied mathematics. Here (1) has already proved useful in automorphic cohomology, in indefinite metric quantization, and in geometric realization and understanding of certain singular representations of interest in physics. The new work proposed is to complete the precise description of the linear cycle space and apply the result to concrete analytic properties of the associated double fibration transforms. (2) is now at the point of understanding the direct limit analogues of the discrete series from both a geometric and an analytic viewpoint. (3) is a matter of completing a very beautiful topic in harmonic analysis. (4) is a question of direct reading of the character and growth properties of a representation from its defining basic datum. And (5) combines methods of control theory with the theory of Riemannian symmetric spaces. That line of research concentrates, at the moment, on the development of point placement techniques for observation of the heat equation on the sphere, along with various associated quadrature and approximation techniques. These research projects all are investigations of the role of symmetry in pure and applied mathematics. Symmetry simplifies calculations by eliminatin g variables or constraining their range, and the structure of the symmetry group and its representations imposes patterns that always lead to better understanding of complex situations. Thus indefinite metric quantization, which is tightly connected to project (1), has applications in particle physics. In fact it is essential for modern understanding of quantization of the photon and other particles that require a subquotient structure. The point placement and quadrature aspects of (5) are closely allied to the development of non- invasive methods of observation and methods of efficient computation. That sort of consideration comes up in many situations, such as medical applications of tomography and location of toxic spills. All five projects are closely related. In project (5), especially, methods developed for use in pure mathematics (specifically abstract harmonic analysis and differential geometry) turn out to have extremely interesting consequences for observability, controllability and practical computation.
摘要9705709狼 约瑟夫·沃尔夫教授将继续他的李群,调和分析和代表性的研究,与一些应用复杂的分析,黎曼几何,数值分析和控制理论。 这包括(1)他的工作双纤维化变换和结构的空间的最大紧凑subvarieties在旗域,(2)他的工作无限维李群是直接限制有限维群体,(3)他的研究的Harish-Chandra-Schwartz空间的一般半单李群,(4)应用他的结果与Milicic,Hecht和Schmid关于半单李群表示的各种构造的等价性,以及(5)他的 半单表示论与应用数学某些方面的联系。 在这里,(1)已经被证明在自守上同调、不定度量量子化、几何实现和理解物理学中感兴趣的某些奇异表示中是有用的。 提出的新工作是完成线性循环空间的精确描述,并将结果应用于相关的双纤维化变换的具体分析性质。 (2)现在的理解点的直接限制类似物的离散系列从几何和分析的观点。 (3)就是要完成一个关于谐波分析的很好的课题。 (4)是一个直接阅读的问题,从其定义的基本数据的字符和增长特性的表示。 (5)将控制论方法与黎曼对称空间理论相结合。 这条线的研究集中,目前,在发展的点放置技术的观察热方程的领域,沿着与各种相关的求积和近似技术。 这些研究项目都是关于对称性在纯数学和应用数学中的作用的调查。 对称性通过消除变量或限制它们的范围来简化计算,对称群的结构及其表示方法强加的模式总是能更好地理解复杂的情况。 因此,与方案(1)紧密相连的不定度规量子化在粒子物理学中有应用。 事实上,它对于现代理解光子和其他需要亚商结构的粒子的量子化至关重要。 (5)的点放置和求积方面与非侵入性观察方法和有效计算方法的发展密切相关。 这种考虑在许多情况下都会出现,比如断层扫描的医疗应用和有毒物质泄漏的位置。 这五个项目是密切相关的。 特别是在项目(5)中,为纯数学(特别是抽象的调和分析和微分几何)而开发的方法对可观测性、可控性和 实用计算
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joseph Wolf其他文献
Tibiotalocalcaneal fusion with bulk femoral head allograft in a patient with a rare, trauma induced, rigid, cavovarus foot deformity
- DOI:
10.1016/j.fastrc.2021.100134 - 发表时间:
2022-03-01 - 期刊:
- 影响因子:
- 作者:
Josh Carroll;Joseph Wolf;Lawrence M. Fallat - 通讯作者:
Lawrence M. Fallat
Outcomes and Material Cost Comparison of Transosseous Versus Suture Anchor Fixation of the Achilles Tendon: A Retrospective Study
- DOI:
10.1053/j.jfas.2021.05.012 - 发表时间:
2022-01-01 - 期刊:
- 影响因子:
- 作者:
Joseph Wolf;Lawrence Fallat;Mary Coffey - 通讯作者:
Mary Coffey
Modified rhytidectomy incision for parotidectomy
- DOI:
10.1016/j.otot.2006.08.001 - 发表时间:
2006-09-01 - 期刊:
- 影响因子:
- 作者:
Larry Shemen;Joseph Wolf;James Turner - 通讯作者:
James Turner
Two-Year Outcomes After Total Ankle Replacement With a Novel Fixed-Bearing Implant By a Single Surgeon Non-Inventor
- DOI:
10.1053/j.jfas.2024.01.001 - 发表时间:
2024-05-01 - 期刊:
- 影响因子:
- 作者:
James M. Cottom;Jay S. Badell;Joseph Wolf - 通讯作者:
Joseph Wolf
Joseph Wolf的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joseph Wolf', 18)}}的其他基金
Sixth Workshop on Lie Theory and Geometry
第六届李理论与几何研讨会
- 批准号:
0726385 - 财政年份:2007
- 资助金额:
$ 8万 - 项目类别:
Standard Grant
Mathematical Sciences: Advanced Training in Modern Analysis
数学科学:现代分析高级培训
- 批准号:
9500288 - 财政年份:1995
- 资助金额:
$ 8万 - 项目类别:
Continuing Grant
U.S.-Argentina Workshop in Lie Groups and Quantum Groups; Cordoba, Argentina, August, 1995
美国-阿根廷李群和量子群研讨会;
- 批准号:
9503118 - 财政年份:1995
- 资助金额:
$ 8万 - 项目类别:
Standard Grant
GIG: Advanced Training in Modern Analysis
GIG:现代分析高级培训
- 批准号:
9508597 - 财政年份:1995
- 资助金额:
$ 8万 - 项目类别:
Continuing Grant
Mathematical Sciences: Advanced Training in Modern Analysis
数学科学:现代分析高级培训
- 批准号:
9208907 - 财政年份:1992
- 资助金额:
$ 8万 - 项目类别:
Continuing Grant
Mathematical Sciences: Lie Groups, Lie Algebras and Their Representations
数学科学:李群、李代数及其表示
- 批准号:
9207093 - 财政年份:1992
- 资助金额:
$ 8万 - 项目类别:
Standard Grant
相似海外基金
Conference: I.H.E.S. Workshop: Homogeneous Dynamics and Geometry in Higher-Rank Lie Groups
会议:I.H.E.S.
- 批准号:
2321093 - 财政年份:2023
- 资助金额:
$ 8万 - 项目类别:
Standard Grant
[infinite]-Lie Groups and Their [infinite]-Lie Algebras in Real Cohesive Homotopy Type Theory
实内聚同伦型理论中的[无穷]-李群及其[无穷]-李代数
- 批准号:
2888102 - 财政年份:2023
- 资助金额:
$ 8万 - 项目类别:
Studentship
Large-N limit of horizontal Brownian motions on Lie groups
李群上水平布朗运动的大 N 极限
- 批准号:
EP/Y001478/1 - 财政年份:2023
- 资助金额:
$ 8万 - 项目类别:
Research Grant
Transforming Groups: The Use of Individuation to Aid Collaborative Recall and Lie Detection in Intelligence-gathering Contexts
转变群体:利用个性化来帮助情报收集环境中的协作回忆和测谎
- 批准号:
2754576 - 财政年份:2022
- 资助金额:
$ 8万 - 项目类别:
Studentship
Studies on unstable cohomologies of the automorphism groups of free groups and its associated Lie algebras
自由群自同构群的不稳定上同调及其相关李代数的研究
- 批准号:
22K03299 - 财政年份:2022
- 资助金额:
$ 8万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Geometry, Arithmeticity, and Random Walks on Discrete and Dense Subgroups of Lie Groups
李群的离散和稠密子群上的几何、算术和随机游走
- 批准号:
2203867 - 财政年份:2022
- 资助金额:
$ 8万 - 项目类别:
Standard Grant
The geometry Anosov subgroups in Lie groups
李群中的几何阿诺索夫子群
- 批准号:
RGPIN-2020-05557 - 财政年份:2022
- 资助金额:
$ 8万 - 项目类别:
Discovery Grants Program - Individual
Lie groups in Mathematics and Physics
数学和物理中的李群
- 批准号:
574647-2022 - 财政年份:2022
- 资助金额:
$ 8万 - 项目类别:
University Undergraduate Student Research Awards
Characterization of Cofree Representations of Connected Semi-simple Lie Groups
连通半单李群 Cofree 表示的表征
- 批准号:
547756-2020 - 财政年份:2022
- 资助金额:
$ 8万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral














{{item.name}}会员




