Lie Groups

李群

基本信息

  • 批准号:
    9988643
  • 负责人:
  • 金额:
    $ 18.3万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2000
  • 资助国家:
    美国
  • 起止时间:
    2000-07-01 至 2004-06-30
  • 项目状态:
    已结题

项目摘要

Abstract for NSF Proposal DMS 99 88643 "Lie Groups" Joseph A. Wolf, U. C. Berkeley The investigator proposes six intertwined research projects, all on the interface between group theory and geometry. For the most part these proposals are geometrically motivated approaches to specific problems in modern harmonic analysis connected to the representation theory of semisimple Lie groups. The first is an approach to construction and analysis of singular unitary representations of real reductive Lie groups,in two steps: (i) geometric construction of those representations, as Frechet space representations on cohomology of homogeneous vector bundles over flag domains, and (ii) transforming the representation space to a space offunctions on a Stein manifold defined by a system of differential equations,by means of a double fibration transform (the complex Penrose transform is a particular case) from the flag domain to its linear cycle space. The second project is an approach to construction and analysis of unitary and other representations for a class of infinite dimensional Lie groups, the direct limits of finite dimensional Lie groups, especially strictdirect limits of finite dimensional real and complex reductive Lie groups,both in the analytic category and in the algebraic category. The thirdproject is to complete the investigator's work on the Harish-Chandra Schwartz space of a general semisimple Lie group, by synthesizing structural analyses of the relative Schwartz spaces. The investigator's fourth project is to complete his development of a direct reading of the character and growth properties (asymptotics) of admissible representations of finite dimensional real reductive Lie groups from the basic data that specify their construction on cohomology spaces of homogeneous vector bundlesover flag domains. One goal here is to do this in such a way that isdirectly applicable to the first and second projects. The fifth projectis to continue some earlier work on control theory and numerical analysis, especially observation point placement problems and numerical quadrature schemes, based on structural results and a priori estimates that come out ofthe representation theory of real reductive Lie groups. The sixth project, not directly analytic in nature, is to follow up on the investigator'srecent discovery of a strange relation between isoclinic spheres inGrassmann manifolds, composition of quadratic forms, normal forms for spaces of antisymmetric bilinear forms, and the construction of flathomogeneous pseudo-riemannian manifolds.These six research projects all depend on the use of symmetry to clarifyanalytic (and in one case geometric) problems. Traditionally symmetryconsiderations are used to simplify matters by decreasing the number ofvariables, but here they are used to enable the use of insight, tools andresults from geometry and analysis. The symmetries are embodied in group theory, which in fact is the algebraic abstraction of the notionof symmetry. But modern Lie group theory incorporates classical analysis(calculus, differential equations...) and is closely tied to the geometry(riemannian, symplectic, kaehler, ...) of the spaces on which the groupsact as symmetries. An important aspect of this synthesis of geometry and analysis is a geometric form of quantization that is particularly well suited to the sorts of finite dimensional groups considered in several of the projects. This geometric quantization, originally inspired by physics and developed in some detail by mathematicians, has in turn been very useful in a variety of settings in mathematics and physics. This is very much the case in five of the six projects, where the geometric quantization is combined with modern differential geometry tounderstand various analytic problems. This is especially evident in the first project, whose objective can be viewed as a sort of dequantization.
NSF 提案 DMS 99 88643“李群”摘要 Joseph A. Wolf,加州大学伯克利分校 该研究人员提出了六个相互交织的研究项目,全部涉及群论和几何之间的接口。 大多数情况下,这些建议是针对与半单李群表示论相关的现代调和分析中的特定问题的几何驱动方法。 第一种是构造和分析实数还原李群的奇异酉表示的方法,分两步:(i)这些表示的几何构造,作为标志域上齐次向量束上同调的 Frechet 空间表示,以及(ii)通过双纤维化变换(复数彭罗斯变换是 特殊情况)从标志域到其线性循环空间。 第二个项目是在解析范畴和代数范畴中构建和分析一类无限维李群的酉表示和其他表示、有限维李群的直接极限、特别是有限维实数和复数还原李群的严格直接极限的方法。 第三个项目是通过综合相关 Schwartz 空间的结构分析来完成研究者对一般半单李群的 Harish-Chandra Schwartz 空间的研究。 研究者的第四个项目是完成对有限维实数还原李群的可接受表示的特征和增长性质(渐近)的直接读取的开发,这些表示从指定其在标志域上的齐次向量束的上同调空间上的构造的基本数据中获得。 这里的一个目标是以直接适用于第一个和第二个项目的方式来完成此操作。 第五个项目是基于结构结果和实数还原李群表示论的先验估计,继续控制理论和数值分析方面的一些早期工作,特别是观察点放置问题和数值求积方案。 第六个项目本质上不是直接解析的,是跟进研究者最近发现的格拉斯曼流形中的等斜球面、二次形式的复合、反对称双线性形式空间的正规形式以及平坦齐次伪黎曼流形的构造之间的奇怪关系。这六个研究项目都依赖于使用对称性来阐明解析 (在一种情况下是几何)问题。 传统上,对称性考虑因素用于通过减少变量数量来简化问题,但在这里,它们用于启用几何和分析的洞察力、工具和结果。 对称性体现在群论中,群论实际上是对称概念的代数抽象。 但现代李群理论结合了经典分析(微积分、微分方程……),并且与群作为对称性的空间的几何学(黎曼、辛、凯勒……)密切相关。 几何和分析综合的一个重要方面是量化的几何形式,它特别适合几个项目中考虑的有限维组的种类。 这种几何量子化最初受到物理学的启发,并由数学家在一些细节上发展起来,反过来在数学和物理学的各种环境中都非常有用。 六个项目中的五个项目就是这种情况,其中几何量化与现代微分几何相结合来理解各种解析问题。 这在第一个项目中尤其明显,其目标可以被视为一种去量化。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Joseph Wolf其他文献

Tibiotalocalcaneal fusion with bulk femoral head allograft in a patient with a rare, trauma induced, rigid, cavovarus foot deformity
  • DOI:
    10.1016/j.fastrc.2021.100134
  • 发表时间:
    2022-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    Josh Carroll;Joseph Wolf;Lawrence M. Fallat
  • 通讯作者:
    Lawrence M. Fallat
Outcomes and Material Cost Comparison of Transosseous Versus Suture Anchor Fixation of the Achilles Tendon: A Retrospective Study
  • DOI:
    10.1053/j.jfas.2021.05.012
  • 发表时间:
    2022-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Joseph Wolf;Lawrence Fallat;Mary Coffey
  • 通讯作者:
    Mary Coffey
Modified rhytidectomy incision for parotidectomy
  • DOI:
    10.1016/j.otot.2006.08.001
  • 发表时间:
    2006-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Larry Shemen;Joseph Wolf;James Turner
  • 通讯作者:
    James Turner
Two-Year Outcomes After Total Ankle Replacement With a Novel Fixed-Bearing Implant By a Single Surgeon Non-Inventor
  • DOI:
    10.1053/j.jfas.2024.01.001
  • 发表时间:
    2024-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    James M. Cottom;Jay S. Badell;Joseph Wolf
  • 通讯作者:
    Joseph Wolf

Joseph Wolf的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Joseph Wolf', 18)}}的其他基金

Lie Groups
李群
  • 批准号:
    0652840
  • 财政年份:
    2007
  • 资助金额:
    $ 18.3万
  • 项目类别:
    Standard Grant
Sixth Workshop on Lie Theory and Geometry
第六届李理论与几何研讨会
  • 批准号:
    0726385
  • 财政年份:
    2007
  • 资助金额:
    $ 18.3万
  • 项目类别:
    Standard Grant
Lie Groups
李群
  • 批准号:
    0400420
  • 财政年份:
    2004
  • 资助金额:
    $ 18.3万
  • 项目类别:
    Standard Grant
Lie Groups
李群
  • 批准号:
    9705709
  • 财政年份:
    1997
  • 资助金额:
    $ 18.3万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Advanced Training in Modern Analysis
数学科学:现代分析高级培训
  • 批准号:
    9500288
  • 财政年份:
    1995
  • 资助金额:
    $ 18.3万
  • 项目类别:
    Continuing Grant
U.S.-Argentina Workshop in Lie Groups and Quantum Groups; Cordoba, Argentina, August, 1995
美国-阿根廷李群和量子群研讨会;
  • 批准号:
    9503118
  • 财政年份:
    1995
  • 资助金额:
    $ 18.3万
  • 项目类别:
    Standard Grant
GIG: Advanced Training in Modern Analysis
GIG:现代分析高级培训
  • 批准号:
    9508597
  • 财政年份:
    1995
  • 资助金额:
    $ 18.3万
  • 项目类别:
    Continuing Grant
Lie Groups
李群
  • 批准号:
    9321285
  • 财政年份:
    1994
  • 资助金额:
    $ 18.3万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Advanced Training in Modern Analysis
数学科学:现代分析高级培训
  • 批准号:
    9208907
  • 财政年份:
    1992
  • 资助金额:
    $ 18.3万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Lie Groups, Lie Algebras and Their Representations
数学科学:李群、李代数及其表示
  • 批准号:
    9207093
  • 财政年份:
    1992
  • 资助金额:
    $ 18.3万
  • 项目类别:
    Standard Grant

相似海外基金

Algebraic groups and Lie algebras
代数群和李代数
  • 批准号:
    2883177
  • 财政年份:
    2023
  • 资助金额:
    $ 18.3万
  • 项目类别:
    Studentship
Conference: I.H.E.S. Workshop: Homogeneous Dynamics and Geometry in Higher-Rank Lie Groups
会议:I.H.E.S.
  • 批准号:
    2321093
  • 财政年份:
    2023
  • 资助金额:
    $ 18.3万
  • 项目类别:
    Standard Grant
[infinite]-Lie Groups and Their [infinite]-Lie Algebras in Real Cohesive Homotopy Type Theory
实内聚同伦型理论中的[无穷]-李群及其[无穷]-李代数
  • 批准号:
    2888102
  • 财政年份:
    2023
  • 资助金额:
    $ 18.3万
  • 项目类别:
    Studentship
Large-N limit of horizontal Brownian motions on Lie groups
李群上水平布朗运动的大 N 极限
  • 批准号:
    EP/Y001478/1
  • 财政年份:
    2023
  • 资助金额:
    $ 18.3万
  • 项目类别:
    Research Grant
Transforming Groups: The Use of Individuation to Aid Collaborative Recall and Lie Detection in Intelligence-gathering Contexts
转变群体:利用个性化来帮助情报收集环境中的协作回忆和测谎
  • 批准号:
    2754576
  • 财政年份:
    2022
  • 资助金额:
    $ 18.3万
  • 项目类别:
    Studentship
Studies on unstable cohomologies of the automorphism groups of free groups and its associated Lie algebras
自由群自同构群的不稳定上同调及其相关李代数的研究
  • 批准号:
    22K03299
  • 财政年份:
    2022
  • 资助金额:
    $ 18.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Geometry, Arithmeticity, and Random Walks on Discrete and Dense Subgroups of Lie Groups
李群的离散和稠密子群上的几何、算术和随机游走
  • 批准号:
    2203867
  • 财政年份:
    2022
  • 资助金额:
    $ 18.3万
  • 项目类别:
    Standard Grant
The geometry Anosov subgroups in Lie groups
李群中的几何阿诺索夫子群
  • 批准号:
    RGPIN-2020-05557
  • 财政年份:
    2022
  • 资助金额:
    $ 18.3万
  • 项目类别:
    Discovery Grants Program - Individual
Lie groups in Mathematics and Physics
数学和物理中的李群
  • 批准号:
    574647-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 18.3万
  • 项目类别:
    University Undergraduate Student Research Awards
Characterization of Cofree Representations of Connected Semi-simple Lie Groups
连通半单李群 Cofree 表示的表征
  • 批准号:
    547756-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 18.3万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了