Mathematical Sciences: Research in Algebraic Geometry and Related Topics

数学科学:代数几何及相关主题的研究

基本信息

  • 批准号:
    9400550
  • 负责人:
  • 金额:
    $ 4.94万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1994
  • 资助国家:
    美国
  • 起止时间:
    1994-07-01 至 1997-07-31
  • 项目状态:
    已结题

项目摘要

Professor Youssin will investigate singularities of complex algebraic varieties. He will study the relationship between decompositions of the L-2 cohomology that come from intersection cohomology and those that come from modules over rings of differential operators. He also intends to study relations between Newton polyhedra and resolution of singularities. This is research in the field of algebraic geometry. Algebraic geometry is one of the oldest parts of modern mathematics, but one which has had a revolutionary flowering in the past quarter- century. In its origin, it treated figures that could be defined in the plane by the simplest equations, namely polynomials. Nowadays the field makes use of methods not only from algebra, but from analysis and topology, and conversely is finding application in those fields as well as in physics, theoretical computer science, and robotics.
尤辛教授将研究复代数簇的奇点。他将研究来自交上同调的L-2上同调的分解与来自微分算子环上的模的上同调的分解之间的关系。他还打算研究牛顿多面体和奇点分解之间的关系。这是在代数几何领域的研究。代数几何是现代数学中最古老的部分之一,但在过去的25年里,它已经取得了革命性的成就。在它的起源中,它处理的是可以在平面上用最简单的方程定义的图形,即多项式。如今,该领域不仅使用代数的方法,而且使用分析和拓扑学的方法,反过来,在这些领域以及物理、理论计算机科学和机器人中也找到了应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Valery Lunts其他文献

On cohomological and K-theoretical Hall algebras of symmetric quivers
  • DOI:
    10.1016/j.jalgebra.2023.09.019
  • 发表时间:
    2024-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Valery Lunts;Špela Špenko;Michel Van den Bergh
  • 通讯作者:
    Michel Van den Bergh
Derived Category of Equivariant Coherent Sheaves on a Smooth Toric Variety and Koszul Duality

Valery Lunts的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Valery Lunts', 18)}}的其他基金

Some problems in derived algebraic geometry
导出代数几何中的几个问题
  • 批准号:
    0901301
  • 财政年份:
    2009
  • 资助金额:
    $ 4.94万
  • 项目类别:
    Standard Grant
Some Problems in Representation Theory and Algebraic Geometry
表示论和代数几何中的一些问题
  • 批准号:
    9700964
  • 财政年份:
    1997
  • 资助金额:
    $ 4.94万
  • 项目类别:
    Standard Grant
Some Problems in Equivariant Geometry & Representation Theory
等变几何中的一些问题
  • 批准号:
    9401018
  • 财政年份:
    1994
  • 资助金额:
    $ 4.94万
  • 项目类别:
    Continuing Grant

相似国自然基金

Handbook of the Mathematics of the Arts and Sciences的中文翻译
  • 批准号:
    12226504
  • 批准年份:
    2022
  • 资助金额:
    20.0 万元
  • 项目类别:
    数学天元基金项目
SCIENCE CHINA: Earth Sciences
  • 批准号:
    41224003
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Environmental Sciences
  • 批准号:
    21224005
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Information Sciences
  • 批准号:
    61224002
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51224001
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
  • 批准号:
    81024803
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Environmental Sciences
  • 批准号:
    21024806
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
  • 批准号:
    41024801
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51024803
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Collaborative Research: Conference: Mathematical Sciences Institutes Diversity Initiative
合作研究:会议:数学科学研究所多样性倡议
  • 批准号:
    2317573
  • 财政年份:
    2024
  • 资助金额:
    $ 4.94万
  • 项目类别:
    Continuing Grant
Collaborative Research: Conference: Mathematical Sciences Institutes Diversity Initiative
合作研究:会议:数学科学研究所多样性倡议
  • 批准号:
    2317570
  • 财政年份:
    2024
  • 资助金额:
    $ 4.94万
  • 项目类别:
    Continuing Grant
Collaborative Research: Conference: Mathematical Sciences Institutes Diversity Initiative
合作研究:会议:数学科学研究所多样性倡议
  • 批准号:
    2317572
  • 财政年份:
    2024
  • 资助金额:
    $ 4.94万
  • 项目类别:
    Continuing Grant
Collaborative Research: Conference: Mathematical Sciences Institutes Diversity Initiative
合作研究:会议:数学科学研究所多样性倡议
  • 批准号:
    2317569
  • 财政年份:
    2024
  • 资助金额:
    $ 4.94万
  • 项目类别:
    Continuing Grant
Collaborative Research: Conference: Mathematical Sciences Institutes Diversity Initiative
合作研究:会议:数学科学研究所多样性倡议
  • 批准号:
    2317571
  • 财政年份:
    2024
  • 资助金额:
    $ 4.94万
  • 项目类别:
    Standard Grant
REU Site: Mathematical Sciences Research Institute Undergraduate Program (MSRI-UP)
REU 网站:数学科学研究所本科项目 (MSRI-UP)
  • 批准号:
    2149642
  • 财政年份:
    2022
  • 资助金额:
    $ 4.94万
  • 项目类别:
    Standard Grant
Collaborative Undergraduate Research Experiences in the Mathematical Sciences for Community College Students
社区学院学生数学科学本科合作研究经验
  • 批准号:
    2150195
  • 财政年份:
    2022
  • 资助金额:
    $ 4.94万
  • 项目类别:
    Standard Grant
MATRIX: enhancing access to global research in the mathematical sciences
MATRIX:增强数学科学研究的全球性
  • 批准号:
    LE220100107
  • 财政年份:
    2022
  • 资助金额:
    $ 4.94万
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
AARMS (Atlantic Association for Research in the Mathematical Sciences)
AARMS(大西洋数学科学研究协会)
  • 批准号:
    568576-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 4.94万
  • 项目类别:
    Discovery Institutes Support Grants
REU Site: Undergraduate Research in the Mathematical Sciences and their Applications
REU 网站:数学科学及其应用的本科研究
  • 批准号:
    2150094
  • 财政年份:
    2022
  • 资助金额:
    $ 4.94万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了