Mathematical Sciences: Geometric Stability Theory
数学科学:几何稳定性理论
基本信息
- 批准号:9400894
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing grant
- 财政年份:1994
- 资助国家:美国
- 起止时间:1994-07-15 至 1997-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9400894 Hrushovski The investigator would like to study the model theory of the Frobenius automorphism. This work has already started, on two fronts. On the one hand, he formulated a conjecture analogous to the Lang-Weil estimates, but more general, that would determine the first order theory of the Frobenius. On the other hand, together with several coworkers, he is in the process of carrying out the fundamental model theoretic analysis of the theory of difference fields in question, along the lines of Shelah and Zilber. Put together, these should throw considerable light on the issue; there will be applications to finite simple groups and perhaps to finite groups in general. The work described in the above paragraph forms part of a general trend in the area of mathematical logic known as model theory. For several decades, this subject developed autonomously. The lack of external pressure allowed it to refine distinct points of view on algebraic structures, and to reach a degree of technical maturity. However, this was done as it were in laboratory conditions, under assumptions ("stability") that are too restrictive in practical applications. The time seems ripe to test the ideas developed in this period against more complex structures, in particular, number theoretic and geometric ones. This requires identifying structures appropriate for model theoretic analysis and performing an algebro-geometric analysis needed to prepare for the model theoretic tools. It also requires generalizing the model theoretic ideas beyond the "stable" context in which they were conceived. Some success has been had with these methods, including the investigation of finite structures with a high degree of symmetry, and the proof of certain conjectures in number theory. One hopes that this is only the beginning of the road. ***
9400894赫鲁晓夫斯基,这位研究者想要研究弗罗贝尼乌斯自同构的模型理论。这项工作已经开始,在两条战线上。一方面,他提出了一个类似于Lang-Weil估计的猜想,但更一般,这将决定Frobenius的一阶理论。另一方面,他正在与几位同事一起,沿着谢拉和齐尔伯的思路,对所讨论的差分场理论进行基本模式理论分析。综上所述,这些应该会给这个问题带来相当大的启发;将会有应用于有限单群,也许还会应用于一般有限群。上段所述的工作是数理逻辑领域中被称为模型理论的大趋势的一部分。几十年来,这门学科一直在自主发展。由于没有外部压力,它可以提炼出对代数结构的不同观点,并达到一定程度的技术成熟度。然而,这是在实验室条件下,在实际应用中过于严格的假设(“稳定性”)下完成的。用更复杂的结构--尤其是数论和几何结构--来检验这一时期形成的思想的时机似乎已经成熟。这需要确定适合模型理论分析的结构,并执行为模型理论工具做准备所需的代数几何分析。它还要求将模型理论思想概括为超出构思它们的“稳定”背景。这些方法已经取得了一些成功,包括对具有高度对称性的有限结构的研究,以及对数论中某些猜想的证明。人们希望这只是这条路的开始。***
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ehud Hrushovski其他文献
A non-PAC field whose maximal purely inseparable extension is PAC
- DOI:
10.1007/bf02758642 - 发表时间:
1994-02-01 - 期刊:
- 影响因子:0.800
- 作者:
Ehud Hrushovski - 通讯作者:
Ehud Hrushovski
On central extensions and definably compact groups in o-minimal structures
- DOI:
10.1016/j.jalgebra.2010.11.001 - 发表时间:
2011-02-01 - 期刊:
- 影响因子:
- 作者:
Ehud Hrushovski;Ya'acov Peterzil;Anand Pillay - 通讯作者:
Anand Pillay
On the canonical base property
- DOI:
10.1007/s00029-013-0129-3 - 发表时间:
2013-06-14 - 期刊:
- 影响因子:1.200
- 作者:
Ehud Hrushovski;Daniel Palacín;Anand Pillay - 通讯作者:
Anand Pillay
Identities of cofinal sublattices
- DOI:
10.1007/bf00334855 - 发表时间:
1985-01-01 - 期刊:
- 影响因子:0.300
- 作者:
George M. Bergman;Ehud Hrushovski - 通讯作者:
Ehud Hrushovski
Stability and omitting types
- DOI:
10.1007/bf02775793 - 发表时间:
1991-10-01 - 期刊:
- 影响因子:0.800
- 作者:
Ehud Hrushovski;Saharon Shelah - 通讯作者:
Saharon Shelah
Ehud Hrushovski的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ehud Hrushovski', 18)}}的其他基金
Mathematical Sciences: Greater Boston Logic Conference, Spring 1995
数学科学:大波士顿逻辑会议,1995 年春季
- 批准号:
9415827 - 财政年份:1995
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Geometric Stability Theory
数学科学:几何稳定性理论
- 批准号:
9106711 - 财政年份:1991
- 资助金额:
-- - 项目类别:
Continuing grant
Mathematical Sciences: Geometric Stability Theory
数学科学:几何稳定性理论
- 批准号:
8903378 - 财政年份:1989
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Presidential Young Investigator Award
数学科学:总统青年研究员奖
- 批准号:
8958511 - 财政年份:1989
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences Postdoctoral Research Fellowship
数学科学博士后研究奖学金
- 批准号:
8605717 - 财政年份:1986
- 资助金额:
-- - 项目类别:
Fellowship Award
相似国自然基金
Handbook of the Mathematics of the Arts and Sciences的中文翻译
- 批准号:12226504
- 批准年份:2022
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
SCIENCE CHINA: Earth Sciences
- 批准号:41224003
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21224005
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Information Sciences
- 批准号:61224002
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51224001
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
- 批准号:81024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21024806
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
- 批准号:41024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
CBMS Conference: Topological and Geometric Methods in Quantum Field Theory NSF-CBMS Regional Conference in the Mathematical Sciences
CBMS 会议:量子场论中的拓扑和几何方法 NSF-CBMS 数学科学区域会议
- 批准号:
1642636 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Geometric methods in the representation theory of affine Hecke algebras, finite reductive groups and character sheaves
数学科学:仿射 Hecke 代数、有限约简群和特征轮表示论中的几何方法
- 批准号:
1303060 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: Geometric methods in the representation theory of affine Hecke algebras, finite reductive groups and quantum groups
数学科学:仿射 Hecke 代数、有限约简群和量子群表示论中的几何方法
- 批准号:
0758262 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Continuing Grant
NSF/CBMS Regional Research Conference in Mathematical Sciences on Geometric Graph Theory, May 28 2002-June 1 2002, UNT
NSF/CBMS 几何图论数学科学区域研究会议,2002 年 5 月 28 日-2002 年 6 月 1 日,UNT
- 批准号:
0121729 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Stabilized Geometric Integrators with Applications to Molecular Simulation
数学科学:稳定几何积分器及其在分子模拟中的应用
- 批准号:
9627330 - 财政年份:1997
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Geometric Properties of Solutions of Partial Differential Equations
数学科学:偏微分方程解的几何性质
- 批准号:
9896161 - 财政年份:1997
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: On Some Geometric Constructions and On the Properties of the Kerr Black Hole
数学科学:关于一些几何结构和克尔黑洞的性质
- 批准号:
9704338 - 财政年份:1997
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Harmonic Measure, Conformal Mappings, and Geometric Measure Theory
数学科学:调和测度、共形映射和几何测度理论
- 批准号:
9706875 - 财政年份:1997
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Algebraic, Geometric and Combinatorial Structures Related to Multivariate Hypergeometric Functions
数学科学:与多元超几何函数相关的代数、几何和组合结构
- 批准号:
9625511 - 财政年份:1996
- 资助金额:
-- - 项目类别:
Continuing grant
Mathematical Sciences: Weak Solutions of Geometric Evolution Equations
数学科学:几何演化方程的弱解
- 批准号:
9626405 - 财政年份:1996
- 资助金额:
-- - 项目类别:
Standard Grant