Mathematical Sciences: Boundary Conditions for Linear Wave Propagation on Unbounded Domains
数学科学:无界域上线性波传播的边界条件
基本信息
- 批准号:9404488
- 负责人:
- 金额:$ 4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1994
- 资助国家:美国
- 起止时间:1994-07-01 至 1997-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9404488 Meade The proposer will develop accurate and efficient numerical solution procedures for problems arising from the scattering of electromagnetic waves by an inhomogeneous body. The natural domain for these problems is unbounded --- the exterior of the scatterer. This work will identify approximate reformulations of the problem on a bounded domain which can be solved by Galerkin methods, in particular the finite element method. The general idea is to truncate the unbounded domain through the selection of an appropriate artificial boundary and a corresponding boundary condition. An exact boundary condition can be used, but its non-local temporal and/or spatial dependence is an obstacle to efficient numerical computations. The primary objective of this project is to find approximate boundary conditions which are defined locally, can be implemented numerically, and yield accurate approximations to the exact solution of the scattering problem. A major challenge will be to develop the mathematical tools which can be used to balance the competing constraints of computational complexity and the different approximation errors. When an electromagnetic signal hits an obstacle, one portion of the wave continues into the object while another part of the wave is reflected back into the surrounding medium. The goal of this project is to devise accurate and efficient numerical algorithms for determining the different components of the electromagnetic wave. The mathematical statement of this problem involves the solution of partial differential equations on an unbounded domain. The fact that the domain is infinite complicates the search for an efficient numerical solution of this problem. The purpose of this research is to identify approximate reformulations of the problem which can be solved numerically without significantly degrading the quality of the computed solution. Initial studies will be directed towards the two-dimensional scalar problem. The ulti mate objective is to be able to solve the vector-valued problem in three-dimensional space. The numerical solution will call for the solution of a system of hundreds of thousands, if not millions, of equations. For this reason, the proposer will be developing codes which can be used on high-performance parallel computers. The results from this project can also be applied in a variety of other applications, including interface problems in elasticity and the scattering of acoustic, seismic, and water waves.
9404488米德:对于非均匀体的电磁波散射所引起的问题,提出准确而有效的数值解程序。这些问题的自然域是无界的——散射体的外部。这项工作将确定问题在有界域上的近似重新表述,可以用伽辽金方法,特别是有限元方法来解决。一般思想是通过选择合适的人工边界和相应的边界条件截断无界域。可以使用精确的边界条件,但其非局部时间和/或空间依赖性是有效数值计算的障碍。这个项目的主要目标是找到近似的边界条件,这些边界条件是局部定义的,可以在数值上实现,并产生精确的近似散射问题的精确解。一个主要的挑战将是开发数学工具,可以用来平衡计算复杂性和不同近似误差的竞争约束。当电磁信号碰到障碍物时,一部分波继续进入物体,而另一部分波被反射回周围的介质中。这个项目的目标是设计出精确和有效的数值算法来确定电磁波的不同组成部分。这个问题的数学表述涉及无界域上偏微分方程的解。定义域是无限的这一事实使寻找这一问题的有效数值解变得复杂。本研究的目的是确定问题的近似重新表述,这些近似表述可以在不显著降低计算解质量的情况下进行数值求解。最初的研究将针对二维标量问题。最终目标是能够在三维空间中解决向量值问题。数值解将要求解一个由几十万甚至几百万个方程组成的系统。因此,建议者将开发可用于高性能并行计算机的代码。该项目的结果也可以应用于各种其他应用,包括弹性界面问题和声波、地震和水波的散射。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Douglas Meade其他文献
Douglas Meade的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Douglas Meade', 18)}}的其他基金
Collaborative Research: Maplets for Calculus (M4C)
协作研究:微积分 Maplets (M4C)
- 批准号:
1123170 - 财政年份:2011
- 资助金额:
$ 4万 - 项目类别:
Continuing Grant
Collaborative Proposal: Maplets for Calculus
协作提案:微积分 Maplets
- 批准号:
0737209 - 财政年份:2008
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
相似国自然基金
Handbook of the Mathematics of the Arts and Sciences的中文翻译
- 批准号:12226504
- 批准年份:2022
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
SCIENCE CHINA: Earth Sciences
- 批准号:41224003
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21224005
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Information Sciences
- 批准号:61224002
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51224001
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21024806
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
- 批准号:81024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
- 批准号:41024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
NSF/CBMS Regional Conference in the Mathematical Sciences - New Perspectives for Boundary Value Problems and Their Asymptotics; May 16-20, 2005; Edinburg, TX
NSF/CBMS 数学科学区域会议 - 边值问题及其渐近问题的新视角;
- 批准号:
0433445 - 财政年份:2005
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
Mathematical Sciences: Higher Index for Coverings of Manifolds with Boundary
数学科学:有边界流形覆盖的更高指数
- 批准号:
9706858 - 财政年份:1997
- 资助金额:
$ 4万 - 项目类别:
Continuing Grant
Mathematical Sciences: Partial Differential Equations: Free Boundary Problems
数学科学:偏微分方程:自由边界问题
- 批准号:
9703842 - 财政年份:1997
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
Mathematical Sciences: Real Variable Techniques in the Approximation of Functions and Boundary Value Problems in Nonsmooth Domains
数学科学:非光滑域中函数逼近和边值问题的实变量技术
- 批准号:
9623251 - 财政年份:1996
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
Mathematical Sciences: Research on Representing Measures and Boundary Behavior in Potential Theory
数学科学:势论中表示测度和边界行为的研究
- 批准号:
9622454 - 财政年份:1996
- 资助金额:
$ 4万 - 项目类别:
Continuing Grant
Mathematical Sciences: Non-Reflecting Boundary Conditions Based on Far Field Expansions
数学科学:基于远场展开的非反射边界条件
- 批准号:
9530937 - 财政年份:1996
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
Mathematical Sciences: Real Variable Techniques in the Approximation of Functions and Boundary Value Problems in Nonsmooth Domains
数学科学:非光滑域中函数逼近和边值问题的实变量技术
- 批准号:
9696267 - 财政年份:1996
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
Mathematical Sciences: Asymptotic Estimates for Boundary- Value Problems in Linear and Nonlinear Continuum Mechanics
数学科学:线性和非线性连续介质力学中边值问题的渐近估计
- 批准号:
9622748 - 财政年份:1996
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
Mathematical Sciences: "Wave and Heat Processes in Fractal Boundary Layers".
数学科学:“分形边界层中的波和热过程”。
- 批准号:
9623727 - 财政年份:1996
- 资助金额:
$ 4万 - 项目类别:
Standard Grant
Mathematical Sciences: Boundary Control Problems for Linear and Non-Linear Partial Differential Equations and Riccati Equations
数学科学:线性和非线性偏微分方程和 Riccati 方程的边界控制问题
- 批准号:
9504822 - 财政年份:1995
- 资助金额:
$ 4万 - 项目类别:
Continuing Grant