Mathematical Sciences: Boundary Control Problems for Linear and Non-Linear Partial Differential Equations and Riccati Equations
数学科学:线性和非线性偏微分方程和 Riccati 方程的边界控制问题
基本信息
- 批准号:9504822
- 负责人:
- 金额:$ 19.71万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1995
- 资助国家:美国
- 起止时间:1995-06-15 至 1998-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9504822 Lasiecka/Triggiani This research project is centered around issues of optimality, regularity, stability or feedback stabilization, for classes of linear and nonlinear partial differential equations which arise in modern technological applications. The three main areas of the study, bound together by a common theme, are: interacting structures and related smart materials , modeled by systems of coupled partial differential equations, typically of different types, with possible couplings of state variables at the boundary; analysis and control theory of linear and nonlinear models of certain elastic shells, such as a spherical caps, but also shells having other geometries; and analysis and control theory of elastic models which exhibit high internal damping and which are acted on by certain boundary controls. At the core of the study are problems of quadratic optimization, leading to a Riccati theory describing the synthesis of the optimal solution; regularity of solutions of partial differential equations in the interior and at the boundary; and feedback stabilization of linear and nonlinear partial differential equations. This study is motivated by problems arising in structural optimization, stabilization and control. At the core of these issues lies the notion of optimization, in accordance with some pre-selected quantitative criterion, of the evolution of some physical system. Such systems often can, and are, modeled as systems of linear or nonlinear partial differential equations involving control variables which are to be selected according to the particular optimization criteria involved. In this project, such an approach is applied to the study of complex interactions such as arise, for example, in thermal/elastic or fluid/structure couplings. The goal is to develop appropriate mathematical models based on partial differential equations and to design optimal control strategies based on a careful analysis of the mathematical models. ***
9504822 Lasiecka/Triggiani这项研究项目围绕着现代技术应用中出现的线性和非线性偏微分方程类的最优性、正则性、稳定性或反馈镇定问题。这项研究的三个主要领域由一个共同的主题结合在一起:相互作用的结构和相关的智能材料,由通常不同类型的耦合偏微分方程组模拟,在边界上可能存在状态变量的耦合;某些弹性壳的线性和非线性模型的分析和控制理论,例如球帽,但也具有其他几何形状的壳;以及具有高内部阻尼并受某些边界控制作用的弹性模型的分析和控制理论。研究的核心问题是二次优化问题,导致了描述最优解的合成的Riccati理论;偏微分方程解在内部和边界上的正则性;以及线性和非线性偏微分方程解的反馈镇定。本研究是针对结构优化、稳定和控制中出现的问题展开的。这些问题的核心是,根据某种预先选定的定量标准,对某些物理系统的演化进行优化的概念。这样的系统通常可以,并且正在被建模为线性或非线性偏微分方程组系统,该系统涉及根据所涉及的特定优化标准来选择的控制变量。在这个项目中,这种方法被应用于研究复杂的相互作用,例如,在热/弹性或流体/结构耦合中产生的相互作用。目标是根据偏微分方程建立适当的数学模型,并在仔细分析数学模型的基础上设计最优控制策略。***
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Irena Lasiecka其他文献
Uniform Stabilization of Navier–Stokes Equations in Critical $$L^q$$ -Based Sobolev and Besov Spaces by Finite Dimensional Interior Localized Feedback Controls
- DOI:
10.1007/s00245-019-09607-9 - 发表时间:
2019-09-25 - 期刊:
- 影响因子:1.700
- 作者:
Irena Lasiecka;Buddhika Priyasad;Roberto Triggiani - 通讯作者:
Roberto Triggiani
Finite Difference Approximation of State and Control Constrained Optimal Control Problem for System with Delay
- DOI:
10.1016/s1474-6670(17)66962-3 - 发表时间:
1977-01-01 - 期刊:
- 影响因子:
- 作者:
Irena Lasiecka - 通讯作者:
Irena Lasiecka
Convergence of Numerical Algorithms for the Approximations to Riccati Equations Arising in Smart Material Acoustic Structure Interactions
- DOI:
10.1023/a:1008610631744 - 发表时间:
1997-07-01 - 期刊:
- 影响因子:2.000
- 作者:
Erik Hendrickson;Irena Lasiecka - 通讯作者:
Irena Lasiecka
Attractors for Second-Order Evolution Equations with a Nonlinear Damping
- DOI:
10.1007/s10884-004-4289-x - 发表时间:
2004-04-01 - 期刊:
- 影响因子:1.300
- 作者:
Igor Chueshov;Irena Lasiecka - 通讯作者:
Irena Lasiecka
Uniform stabilization in Besov spaces with arbitrary decay rates of the magnetohydrodynamic system by finite-dimensional interior localized static feedback controllers
- DOI:
10.1007/s40687-024-00490-7 - 发表时间:
2024-12-18 - 期刊:
- 影响因子:1.200
- 作者:
Irena Lasiecka;Buddhika Priyasad;Roberto Triggiani - 通讯作者:
Roberto Triggiani
Irena Lasiecka的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Irena Lasiecka', 18)}}的其他基金
Control of Fluid-Structure Interactions: Finite Dimensional Strategies for Flutter/Turbulence Suppression
流固耦合控制:颤振/湍流抑制的有限维策略
- 批准号:
2205508 - 财政年份:2022
- 资助金额:
$ 19.71万 - 项目类别:
Standard Grant
Collaborative Research: Promoting Success in Undergraduate Mathematics through Graduate Teaching Assistant Training
合作研究:通过研究生助教培训促进本科数学的成功
- 批准号:
1821619 - 财政年份:2018
- 资助金额:
$ 19.71万 - 项目类别:
Standard Grant
Interface Control for Systems of Strongly Coupled Partial Differential Equations
强耦合偏微分方程组的接口控制
- 批准号:
1713506 - 财政年份:2017
- 资助金额:
$ 19.71万 - 项目类别:
Continuing Grant
Control at the interface of strongly coupled partial differential equations
强耦合偏微分方程接口的控制
- 批准号:
1444215 - 财政年份:2013
- 资助金额:
$ 19.71万 - 项目类别:
Continuing Grant
Control at the interface of strongly coupled partial differential equations
强耦合偏微分方程接口的控制
- 批准号:
1108871 - 财政年份:2011
- 资助金额:
$ 19.71万 - 项目类别:
Continuing Grant
Control Problems for Strongly Coupled Non-Linear Partial Differential Equations
强耦合非线性偏微分方程的控制问题
- 批准号:
0606682 - 财政年份:2006
- 资助金额:
$ 19.71万 - 项目类别:
Continuing Grant
US-France Cooperative Research (INRIA): Control of Interactive Structures with Dynamic Shells
美法合作研究(INRIA):用动态壳控制交互结构
- 批准号:
0226961 - 财政年份:2003
- 资助金额:
$ 19.71万 - 项目类别:
Standard Grant
Control problems for systems of strongly coupled partial differential equations with variable coefficients.
具有变系数的强耦合偏微分方程组的控制问题。
- 批准号:
0104305 - 财政年份:2001
- 资助金额:
$ 19.71万 - 项目类别:
Continuing Grant
Control Problems of Systems of Strongly Coupled Partial Differential Equations
强耦合偏微分方程组的控制问题
- 批准号:
9804056 - 财政年份:1998
- 资助金额:
$ 19.71万 - 项目类别:
Standard Grant
U.S.-France Cooperative Research: Shape Analysis of DampingProcesses for Elastic Systems in Structural Modelling
美法合作研究:结构建模中弹性系统阻尼过程的形状分析
- 批准号:
9218323 - 财政年份:1993
- 资助金额:
$ 19.71万 - 项目类别:
Standard Grant
相似国自然基金
Handbook of the Mathematics of the Arts and Sciences的中文翻译
- 批准号:12226504
- 批准年份:2022
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
SCIENCE CHINA: Earth Sciences
- 批准号:41224003
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21224005
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Information Sciences
- 批准号:61224002
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51224001
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21024806
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
- 批准号:81024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
- 批准号:41024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
NSF/CBMS Regional Conference in the Mathematical Sciences - New Perspectives for Boundary Value Problems and Their Asymptotics; May 16-20, 2005; Edinburg, TX
NSF/CBMS 数学科学区域会议 - 边值问题及其渐近问题的新视角;
- 批准号:
0433445 - 财政年份:2005
- 资助金额:
$ 19.71万 - 项目类别:
Standard Grant
Mathematical Sciences: Higher Index for Coverings of Manifolds with Boundary
数学科学:有边界流形覆盖的更高指数
- 批准号:
9706858 - 财政年份:1997
- 资助金额:
$ 19.71万 - 项目类别:
Continuing Grant
Mathematical Sciences: Partial Differential Equations: Free Boundary Problems
数学科学:偏微分方程:自由边界问题
- 批准号:
9703842 - 财政年份:1997
- 资助金额:
$ 19.71万 - 项目类别:
Standard Grant
Mathematical Sciences: Real Variable Techniques in the Approximation of Functions and Boundary Value Problems in Nonsmooth Domains
数学科学:非光滑域中函数逼近和边值问题的实变量技术
- 批准号:
9623251 - 财政年份:1996
- 资助金额:
$ 19.71万 - 项目类别:
Standard Grant
Mathematical Sciences: Research on Representing Measures and Boundary Behavior in Potential Theory
数学科学:势论中表示测度和边界行为的研究
- 批准号:
9622454 - 财政年份:1996
- 资助金额:
$ 19.71万 - 项目类别:
Continuing Grant
Mathematical Sciences: Non-Reflecting Boundary Conditions Based on Far Field Expansions
数学科学:基于远场展开的非反射边界条件
- 批准号:
9530937 - 财政年份:1996
- 资助金额:
$ 19.71万 - 项目类别:
Standard Grant
Mathematical Sciences: Real Variable Techniques in the Approximation of Functions and Boundary Value Problems in Nonsmooth Domains
数学科学:非光滑域中函数逼近和边值问题的实变量技术
- 批准号:
9696267 - 财政年份:1996
- 资助金额:
$ 19.71万 - 项目类别:
Standard Grant
Mathematical Sciences: Asymptotic Estimates for Boundary- Value Problems in Linear and Nonlinear Continuum Mechanics
数学科学:线性和非线性连续介质力学中边值问题的渐近估计
- 批准号:
9622748 - 财政年份:1996
- 资助金额:
$ 19.71万 - 项目类别:
Standard Grant
Mathematical Sciences: "Wave and Heat Processes in Fractal Boundary Layers".
数学科学:“分形边界层中的波和热过程”。
- 批准号:
9623727 - 财政年份:1996
- 资助金额:
$ 19.71万 - 项目类别:
Standard Grant
Mathematical Sciences: Construction of Wavelets on Finite Domans and Applications to Boundary Integral Equations
数学科学:有限域上的小波构造及其在边界积分方程中的应用
- 批准号:
9504780 - 财政年份:1995
- 资助金额:
$ 19.71万 - 项目类别:
Standard Grant