Mathematical Sciences: RUI Problems in Magnetohydrostatic Equlilbrium Arising in the Study of the Solar Corona

数学科学:日冕研究中出现的磁流体静力平衡中的 RUI 问题

基本信息

  • 批准号:
    9406573
  • 负责人:
  • 金额:
    $ 3.8万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1994
  • 资助国家:
    美国
  • 起止时间:
    1994-06-15 至 1996-05-31
  • 项目状态:
    已结题

项目摘要

9406573 Stredulinsky One of the outstanding open problems in solar astrophysics is the existence of enormously high temperatures in the sun's corona, on the order of a million degrees Kelvin, which have baffled astrophysicists for generations. The main object of this project is to give a careful mathematical analysis of a theory due to E.N. Parker which claims that coronal heating is primarily due to the formation of certain violent disruptions in the suns magnetic field (the formation of current sheets) associated with solar flares. Due to the relationship with sun spots and solar flares the issue of coronal heating is directly tied to the practical issues of variations in the earth's climate and electromagnetic interference. The main focus of the analysis will be the study of tube like loops of magnetic field lines with ends anchored in the suns surface or photosphere. It is proposed that current sheets form when the ends of such a tube are twisted more than a certain critical amount. In attempting to understand the phenomenon of current sheet formation in Parker's model of coronal heating, the equations of ideal 3D magnetohydrodynamics will studied in an open flux tube geometry. Existence of solutions will be considered subject to prescription of the twist in the magnetic field lines from one end of the tube to the other. It is conjectured that smooth solutions will exist up to a certain critical twist, at which point current sheets will form i.e. the curl of the magnetic field (the current) will become a singular measure, the singular part supported on a set of finite two dimensional measure. The transition from subcritical to critical values of the twist is conjectured to correspond to a critical exponent in a geometric type of Sobolev inequality linked to the topology of the field line structure. The main emphasis will be placed on the constant pressure or force free case of ideal MHD. Existence of solutions will be studied through the use of an iteration scheme which avoids the lack on compactness inherent in many variational approaches to the problem.
小行星9406573 太阳天体物理学中一个悬而未决的问题是日冕中存在着极高的温度,大约在一百万开氏度,这让几代天体物理学家感到困惑。这个项目的主要目的是对E.N.帕克提出,日冕加热主要是由于与太阳耀斑有关的太阳磁场中某些剧烈破坏的形成(电流片的形成)。由于与太阳黑子和太阳耀斑的关系,日冕加热问题直接关系到地球气候变化和电磁干扰的实际问题。分析的主要焦点将是研究末端固定在太阳表面或光球层中的磁场线的管状环。有人提出,电流片形成时,这样的管的两端扭曲超过一定的临界量。 为了理解帕克日冕加热模型中的电流片形成现象,我们将在开放的磁通管几何中研究理想三维磁流体力学方程。解的存在性将被认为是受从管的一端到另一端的磁场线的扭曲的处方。证明了光滑解将存在到某一临界扭曲,在该临界扭曲处将形成电流片,即磁场(电流)的旋度将成为奇异测度,奇异部分支撑在一组有限的二维测度上。据推测,扭曲从亚临界值到临界值的转变对应于与场线结构拓扑结构相关的索博列夫不等式几何类型中的临界指数。重点将放在恒压或力自由的情况下,理想磁流体。将通过使用迭代方案,避免了在许多变分方法的问题固有的紧凑性缺乏解决方案的存在性进行研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Edward Stredulinsky其他文献

Edward Stredulinsky的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Edward Stredulinsky', 18)}}的其他基金

Mathematical Sciences: "RUI: Magnetohydrostatic Problems Relevant to Current Sheets and Heating of the Solar Corona"
数学科学:“RUI:与电流片和日冕加热相关的磁流体静力问题”
  • 批准号:
    9622923
  • 财政年份:
    1996
  • 资助金额:
    $ 3.8万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Application of the Mulilayer Free Boundary Method to Nonlinear Elliptic Equations in Convex Domains
数学科学:多层自由边界法在凸域非线性椭圆方程中的应用
  • 批准号:
    9102886
  • 财政年份:
    1991
  • 资助金额:
    $ 3.8万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Regularity Theory for Certain Nonlinear Elliptic Equations Involving Derivatives of Rearrangements of Solutions
数学科学:涉及解重排导数的某些非线性椭圆方程的正则理论
  • 批准号:
    9196040
  • 财政年份:
    1990
  • 资助金额:
    $ 3.8万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Regularity Theory for Certain Nonlinear Elliptic Equations Involving Derivatives of Rearrangements of Solutions
数学科学:涉及解重排导数的某些非线性椭圆方程的正则理论
  • 批准号:
    8904935
  • 财政年份:
    1989
  • 资助金额:
    $ 3.8万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Regularity Theory for Certain Nonlinear Elliptic Equations and Related Variational Problems Involving Derivatives of Rearrangement of Solutions
数学科学:某些非线性椭圆方程和涉及解重排导数的相关变分问题的正则理论
  • 批准号:
    8702532
  • 财政年份:
    1987
  • 资助金额:
    $ 3.8万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Regularity Theory for Certain Nonlinear Elliptic Equations and Related Variational Problems Involving Derivatives of Rearrangement of Solutions
数学科学:某些非线性椭圆方程和涉及解重排导数的相关变分问题的正则理论
  • 批准号:
    8896120
  • 财政年份:
    1987
  • 资助金额:
    $ 3.8万
  • 项目类别:
    Standard Grant

相似国自然基金

Handbook of the Mathematics of the Arts and Sciences的中文翻译
  • 批准号:
    12226504
  • 批准年份:
    2022
  • 资助金额:
    20.0 万元
  • 项目类别:
    数学天元基金项目
SCIENCE CHINA: Earth Sciences
  • 批准号:
    41224003
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Environmental Sciences
  • 批准号:
    21224005
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Information Sciences
  • 批准号:
    61224002
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51224001
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
  • 批准号:
    81024803
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Environmental Sciences
  • 批准号:
    21024806
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
  • 批准号:
    41024801
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51024803
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Mathematical Sciences: "RUI: Magnetohydrostatic Problems Relevant to Current Sheets and Heating of the Solar Corona"
数学科学:“RUI:与电流片和日冕加热相关的磁流体静力问题”
  • 批准号:
    9622923
  • 财政年份:
    1996
  • 资助金额:
    $ 3.8万
  • 项目类别:
    Standard Grant
Mathematical Sciences\RUI: Problems in Algebra: Group Actions on Trees and Buildings
数学科学RUI:代数问题:树木和建筑物的群作用
  • 批准号:
    9623282
  • 财政年份:
    1996
  • 资助金额:
    $ 3.8万
  • 项目类别:
    Standard Grant
Mathematical Sciences: RUI Inverse Problems in Thermal Imaging
数学科学:热成像中的 RUI 反问题
  • 批准号:
    9623279
  • 财政年份:
    1996
  • 资助金额:
    $ 3.8万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: RUI: Minimal Surfaces, Clusters, and Singular Geometry
数学科学:RUI:最小曲面、簇和奇异几何
  • 批准号:
    9625641
  • 财政年份:
    1996
  • 资助金额:
    $ 3.8万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: RUI: Topological Embeddings in Piecewise Linear Manifolds
数学科学:RUI:分段线性流形中的拓扑嵌入
  • 批准号:
    9626221
  • 财政年份:
    1996
  • 资助金额:
    $ 3.8万
  • 项目类别:
    Standard Grant
RUI: Mathematical Sciences: Spherical Characters on P-adic Coset Spaces and the Relative Trace Formula
RUI:数学科学:P-进陪集空间上的球面特征和相对迹公式
  • 批准号:
    9623125
  • 财政年份:
    1996
  • 资助金额:
    $ 3.8万
  • 项目类别:
    Standard Grant
Mathematical Sciences: RUI: Mathematical Modeling of Hematopoiesis and Cell Cycles in Escherichia coli
数学科学:RUI:大肠杆菌造血和细胞周期的数学模型
  • 批准号:
    9627047
  • 财政年份:
    1996
  • 资助金额:
    $ 3.8万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: RUI: Dupin Submanifolds
数学科学:RUI:杜宾子流形
  • 批准号:
    9504535
  • 财政年份:
    1995
  • 资助金额:
    $ 3.8万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: RUI: Geometric Tomography
数学科学:RUI:几何断层扫描
  • 批准号:
    9501289
  • 财政年份:
    1995
  • 资助金额:
    $ 3.8万
  • 项目类别:
    Standard Grant
Mathematical Sciences: RUI: Spaces of Holomorphic Functions and Their Operators
数学科学:RUI:全纯函数空间及其运算符
  • 批准号:
    9502983
  • 财政年份:
    1995
  • 资助金额:
    $ 3.8万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了